ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨ÁùÊ®Áù£©
£¨11.14-11.20/2011£©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úÐÂ
¡¡¡¡Ö÷ÒªÄÚÈÝ£º·¢Ã÷SHARPINÂѰ×ÊÇÄÚÔ´ÐÔ¦Â1ÕûºÏËØ¼¤»îµÄÒÖÖÆ¼Á£»°©Ö¢ÍŽáÖÎÁƵġ°ÍòÄÜÒ©¡±£»ÖÕֹƤ·ô°©ÐγɵÄÐźţ»ÈËÌå¶àÐÑĿϸ°û´úлµÄµ÷Àí»úÖÆ£»»áÉøÍ¸ºìϸ°ûÌìÉúËØEPOµÄѪ¹Ü£»Ö×ÁöÉú³¤Àë²»¿ª·Ö×ÓÅóٽ鵼µÄ×ÔÊÉ¡£
¡¡¡¡½¹µã¶¯Ì¬£ºÈËÌå¶àÐÑĿϸ°û´úлµÄµ÷Àí»úÖÆ¡£
1. ·¢Ã÷SHARPINÂѰ×ÊÇÄÚÔ´ÐÔ¦Â1ÕûºÏËØ¼¤»îµÄÒÖÖÆ¼Á
¡¾¶¯Ì¬¡¿
¡¡¡¡ÓÐÐò¼¤»îÕûºÏËØ¶Ôϸ°û¸½×Å¡¢Ô˶¯ºÍ×éÖ¯µÄÎȹ̶¼ÊÇÖÁ¹ØÖ÷ÒªµÄ¡£ÂѰ×Talin ºÍ kindlin¼¤»î¦Â1ÕûºÏËØ£¬¿ÉÊǵÖÏû¼¤»îµÄÒÖÖÆ»úÖÆ»¹²»ÇåÎú¡£·ÒÀ¼¿ÆÑ§¼Òͨ¹ýRNAiɸѡ·¢Ã÷SHARPINÂѰ×ÊǦÂ1ÕûºÏËØµÄÖ÷ÒªÒÖÖÆ¼Á¡£SHARPINÂѰ×ÔÚÈËÌ尩ϸ°ûºÍÖ÷ÒªµÄ°×ѪÇòÖÐÒÖÖÆ¦Â1ÕûºÏËØµÄ¹¦Ð§¡£ÔÚSHARPINȱÏݵÄÀÏÊóÖÐÏËάϸ°û¡¢°×ѪÇòºÍ½ÇÖÊϸ°ûÌåÏÖ³öÔöÇ¿Á˵ĦÂ1ÕûºÏËØ×÷Ó㬶øÍ¨¹ýÖØÐ±í´ïSHARPINÂѰ×Äܹ»Íêȫɨ³ýÕâÖÖÔöÇ¿¡£SHARPINÂѰ×Ö±½ÓÍŽᵽÕûºÏËØ¦ÁÑÇ»ùµÄÒ»¸öÊØ¾ÉµÄ°ûÖÊÇø£¬ÒÖÖÆÕûºÏËØÕÐD»îÂѰ×Talin ºÍ kindlin¡£Òò´Ë£¬SHARPINÂѰ×ÒÖÖÆÁ˦Â1ÕûºÏËØ´ÓÎÞ»îÐÔµ½ÓлîÐÔµÄÒªº¦µÄ¹¹Ïóת±ä¡£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿ÔÚÒÑÖª¦Â1ÕûºÏËØµÄ¼¤»îÂѰ׻ù´¡ÉÏ·¢Ã÷ÁËÒÖÖÆÆä¼¤»îµÄÂѰף¬½øÒ»²½ÍêÉÆÁ˦Â1ÕûºÏËØµÄµ÷¿Ø»úÖÆ£¬¹ØÓÚÑо¿ÈËÌå×éÖ¯ÔõÑù¼á³Ö×ÔÉíµÄƽºâºÍÎȹÌÓÐÖ÷ÒªÒâÒå¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
Nature Cell Biology, 2011; 13 (11): 1315 DOI: 10.1038/ncb2340
SHARPIN is an endogenous inhibitor of ¦Â1-integrin activation
Juha K. Rantala, Jeroen Pouwels, Teijo Pellinen, et al.
Regulated activation of integrins is critical for cell adhesion, motility and tissue homeostasis. Talin and kindlins activate ¦Â1-integrins, but the counteracting inhibiting mechanisms are poorly defined. We identified SHARPIN as an important inactivator of ¦Â1-integrins in an RNAi screen. SHARPIN inhibited ¦Â1-integrin functions in human cancer cells and primary leukocytes. Fibroblasts, leukocytes and keratinocytes from SHARPIN-deficient mice exhibited increased ¦Â1-integrin activity, which was fully rescued by re-expression of SHARPIN. We found that SHARPIN directly binds to a conserved cytoplasmic region of integrin ¦Á-subunits and inhibits recruitment of talin and kindlin to the integrin. Therefore, SHARPIN inhibits the critical switching of ¦Â1-integrins from inactive to active conformations.
2. °©Ö¢ÍŽáÖÎÁƵġ°ÍòÄÜÒ©¡±
¡¾¶¯Ì¬¡¿
¡¡¡¡ÓÉÓÚÿÖÖ°©Ö¢¶¼ÊÇһЩ´¦ÓÚ²î±ðÉú³¤½×¶ÎµÄ°©Ï¸°ûµÄ·ÇÔȳƻìÏýÎÆäÖÎÁƾÍÃæÁÙÒ»´ÎͬʱÖÎÁƶàÖÖ²î±ðµÄ²¡±äϸ°û¡£Ò»ÖÖ¿ÉÐŵIJ½·¥Êǽ¨Éè¸öÌ廯µÄ»ùÒòºÍÂѰ×ͼÆ×£¬ÕÒ³öÄ¿µÄ°©»ùÒò²¢¿ª³öרÃÅÕë¶Ôµ¥¸ö²¡È˵İÐÏòÖÎÁÆÒ©ÎïµÄ×éºÏ¡£¿ÉÊÇ£¬¸öÌ廯ҽѧ»¹±£´æÐí¶àÏÖʵÎÊÌ⣺1£©Ö×Áö¾³£Ñݱä³ö¿¹Ò©µÄÀàÐÍ£»2£©ÖÎÁƻἫÆäÌÚ¹ó£»3£©Ðí¶à°ÐÏòÖÎÁÆÒ©ÎﻹûÓпª·¢³öÀ´¡£ÃÀ¹ú¿ÆÑ§¼Ò¾Í´ËÌá³öÁËÒÑÔÚ¶¯ÎïʵÑéÖÐÊÕЧµÄÁíÒ»ÖÖÕ½ÂÔ£º2-ÍÑÑõÆÏÌÑÌÇ£¨2DG£©ÓëBcl-2Þ׿¹¼Á£¨ÈçABT£©µÄÍŽáÖÎÁÆ¡£´ÙµòÍöÂѰ×Bakͨ³£±»Mcl-1 ºÍ Bcl-xLÒÖÖÆ¡£Ö»ÓдÓMcl-1 ºÍ Bcl-xLÊͷųöÀ´ºó£¬Bak²Å»ªÓÕµ¼µòÍö¡£2DGͨ¹ý½âÀëBak-Mcl-1 ¸´ºÏÎïÄܹ»Ê¹´ó×ÚÆÊÎöÌǵÄϸ°û£¬Ò»Ñùƽ³£ÊÇһЩÄÔϸ°ûºÍ´ó²¿·Ö°©Ï¸°û£¬×öºÃ×¼±¸¡£Ö®ºó£¬ABTÄܹ»ÍŽáBcl-xL£¬½âÀëBak-Bcl-xL¸´ºÏÎ½â·ÅBakÈ¥ÓÕµ¼Ï¸°ûµòÍö¡£ABT²»¿É´©¹ýѪÄÔÆÁÕÏ£¬Ö»ÓÐλÓÚÄÔ²¿ÒÔÍâ´ó×ÚÆÊÎöÌǵݩϸ°ûÄܹ»½Ó´¥2DGºÍABTÁ½ÖÖÎïÖÊ¡£ÓÉÓÚABTÔÚºÜÊÇ¿¿½üµòÍöÄ©ÆÚµÄ½×¶ÎÖ±½Ó´¥·¢Ï¸°ûµòÍö£¬2DG-ABTÍŽáÖÎÁÆÊÊÓÃÓÚËùÓÐÉú³¤½×¶ÎµÄÐí¶àÖÖ°©Ö¢£¬¸±×÷ÓúÜС¡£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿Í¨¹ýÁ½ÖÖÎïÖʵÄÍŽáʹÓ÷ÖÁ½²½ÌØÒìÐÔµÄʹÄÔÍâµÄ°©Ï¸°ûÊ×ÏÈʧȥÆÏÌÑÌÇÄÜÁ¿´úл¹©Ó¦¼Ì¶ø´¥·¢Ï¸°ûµòÍö£¬¿ÉÒÔÊÊÓÃÓÚ²î±ð½×¶ÎµÄ¶àÖÖ°©Ö¢£¬¸±×÷ÓÃÊÇÓÐʱ¼ä»áÒýÆðÁܰÍϸ°ûºÍѪС°åïÔÌ¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
Cancer Research, 2011; DOI: 10.1158/0008-5472.CAN-11-3091
Finding a Panacea Among Combination Cancer Therapies
R. Yamaguchi, G. Perkins.
Since each cancer is a heterogeneous mix of cancer cells at different stages of development, we are faced with trying to treat many different diseased cells all at once. An authentic approach is to build a genomic and proteomic profile of a patient, identify the target oncogenes and prescribe the combination of targeted drugs tailored for that patient. However, there are many practical problems with this personalized medicine approach: (1) cancers often generate treatment-resistant phenotypes, (2) the treatment could be enormously expensive, and (3) most of the targeted drugs have not been developed yet. We propose a different approach: therapies that combine 2-deoxyglucose (2DG) with Bcl-2 antagonists such as ABT-263/737 (ABT). Pro-apoptotic protein Bak is normally sequestered by Mcl-1 and Bcl-xL. Only when Bak is released from both Mcl-1 and Bcl-xL, can it induce apoptosis. 2DG can prime highly glycolytic cells by dissociating Bak-Mcl-1 complex. Cells primed by 2DG are some brain cells and most cancer cells. ABT can bind to Bcl-xL, dissociating Bak-Bcl-xL complex, freeing Bak and inducing apoptosis. Since ABT cannot cross blood-brain barrier, only cells exposed to both agents are highly glycolytic cancer cells located outside the brain. Because ABT directly triggers apoptosis at the step very near the terminal point of apoptosis, 2DG-ABT combination therapies are applicable to many types of cancer at all stages of development, with little side effect.
3. ÖÕֹƤ·ô°©ÐγɵÄÐźÅ
¡¾¶¯Ì¬¡¿
¡¡¡¡ÁÛ״ϸ°û°©£¨SCC£©ËäÈ»ºÜ³£¼û£¬¿ÉÊÇÆä·Ö×Ó»úÀíÈÔ²»Ã÷Îú¡£°Ä´óÀûÑÇ¡¢²¨À¼ºÍÃÀ¹ú¿ÆÑ§¼ÒµÄºÏ×÷Ñо¿ÔÚÀÏÊóÖз¢Ã÷Á˸ßЧµÄSCCÒÖÖÆÎï--·¢Óýת¼Òò×ÓGrhl3£¬²¢Ö¤ÊµÒÔGrhl3ΪĿµÄµÄmiR-21ÒÀÀµµÄÔ°©»ùÒòÍøÂçÔöÇ¿ÁËÈËÌåµÄSCC¡£³ÉÌå±íƤÖÐɾ³ýGrhl3»áÒýÆðÒ»ÖÖGRHL3µÄÖ±½Ó°Ð±êPTENÂѰױí´ïµÄËðʧ£¬µ¼ÖÂPI3K/AKT/mTORÐźż¤»îÓÕµ¼µÄÇÖÏ®ÐÔSCC¡£»Ö¸´Pten±í´ïÄܹ»ÍêÈ«ÖÕÖ¹SCCµÄÐγɡ£ÈËÌ寤·ôºÍÍ·¾±SCCÖÐÏÔ×ÅïÔ̵ÄGRHL3ºÍPTENˮƽÓëÒԴ˶þÕßΪ°Ð±êµÄmiR-21ˮƽÔöÌíÏà¹ØÁª¡£ËûÃǵÄÊý¾Ý½«GRHL3-PTENÖá½ç˵ΪSCCµÄÒªº¦Ö×ÁöÒÖÖÆÍ¾¾¶¡£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿·¢Ã÷ÁËÒÖÖÆÁÛ״Ƥ·ô°©ÐγɵķÖ×Ó»úÖÆ£¬¹ØÓÚÁÛ״Ƥ·ô°©µÄÔ¤·ÀºÍÖÎÁÆÓÐÖ÷Òª¼ÛÖµ¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
Cancer Cell, Volume 20, Issue 5, 635-648, 15 November 2011
Targeting of the Tumor Suppressor GRHL3 by a miR-21-Dependent Proto-Oncogenic Network Results in PTEN Loss and Tumorigenesis
Charbel Darido, Smitha R. Georgy, Tomasz Wilanowski, et al.
Despite its prevalence, the molecular basis of squamous cell carcinoma (SCC) remains poorly understood. Here, we identify the developmental transcription factor Grhl3 as a potent tumor suppressor of SCC in mice, and demonstrate that targeting of Grhl3 by a miR-21-dependent proto-oncogenic network underpins SCC in humans. Deletion of Grhl3 in adult epidermis evokes loss of expression of PTEN, a direct GRHL3 target, resulting in aggressive SCC induced by activation of PI3K/AKT/mTOR signaling. Restoration of Pten expression completely abrogates SCC formation. Reduced levels of GRHL3 and PTEN are evident in human skin, and head and neck SCC, associated with increased expression of miR-21, which targets both tumor suppressors. Our data define the GRHL3-PTEN axis as a critical tumor suppressor pathway in SCC.
4. ÈËÌå¶àÐÑĿϸ°û´úлµÄµ÷Àí»úÖÆ
¡¾¶¯Ì¬¡¿
¡¡¡¡Ö÷Ҫƾ֤ÐÎ̬ѧ֤¾Ý£¬¼ÙÉèÈËÌå¶àÐÑĿϸ°û£¨hPSCs£©º¬ÓÐδ³ÉÊìµÄ¡¢²»¿É¾ÙÐÐÉúÎïÄÜÁ¿´úлµÄÏßÁ£Ìå¡£Ïà·´£¬ÒÑ·Ö½âµÄ³ÉÌåϸ°ûÓµÓÐ֦״µÄÏßÁ£ÌåÍøÂç¾ÙÐÐÑõ»¯Á×Ëữ×÷ΪÖ÷ÒªµÄÄÜÁ¿ÈªÔ´¡£ÏßÁ£ÌåÔÚhPSCsµÄÉúÎïÄÜѧºÍϸ°û·Ö½âÖеÄ×÷Óû¹²»È·¶¨¡£ÃÀ¹ú¿ÆÑ§¼ÒµÄ×îÐÂÑо¿Åú×¢hPSCsÓÐÆð×÷ÓõĺôÎü¸´ºÏÎïÄܹ»×î´ó×ÚµÄÏûºÄÑõÆø¡£Ö»¹ÜÔÆÔÆ£¬hPSCsµÄATPÉú²úÖ÷ÒªÕվɿ¿Ìǽͽ⣬F1F0 ATPºÏ³ÉøÏûºÄATPÀ´²¿·Öά³ÖhPSCÏßÁ£ÌåĤµçλºÍϸ°û»îÁ¦¡£½âñîÁªÂѰ×2£¨UCP2£©Í¨¹ýÔ¤·ÀµØÁ£ÌåÆÏÌÑÌÇÑõ»¯ºÍÔö½ø¾Óɵ×Îï·ÖÁ÷»úÖÆµÄÌǽͽâµ÷ÀíhPSCµÄÄÜÁ¿´úл¡£ÔçÆÚµÄ·Ö½âʹµÃhPSCÔöÖ³±äÂý£¬ÄÜÁ¿´úл½µµÍ£¬UCP2±»ÒÖÖÆ£¬µ¼ÖÂÌǽͽâïÔÌ£¬Î¬³Ö»òÌá¸ßÁËÏßÁ£ÌåÆÏÌÑÌÇÑõ»¯¡£Òì³£µÄUCP2±í´ïÈÅÂÒÁËÕâÒ»´úлת»»Ëðº¦ÁËhPSC·Ö½â¡£×ÜÖ®£¬hSPCs¾ßÓÐÓй¦Ð§µÄÏßÁ£ÌåÒ²ÐèÒªUCP2ÒÖÖÆÒÔ¾ÙÐÐÍêÈ«µÄ·Ö½â¡£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿Åú×¢ÈËÌå¶àÐÑĿϸ°ûÓµÓÐÄܹ»¾ÙÐÐÑõ»¯Á×ËữµÄÏßÁ£Ì壬¿ÉÊÇÆäÖ÷ÒªÄÜÁ¿ÈªÔ´ÊÇÌǽͽ⣬ÆäÕý³£·Ö½âÐèÒªÒÖÖÆUCP2µÄ×÷Óã¬Ê¹ÆäÄÜÁ¿´úл;¾¶´ÓÌǽͽâÏòÑõ»¯Á×Ëữת±ä¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
The EMBO Journal, 2011; DOI: 10.1038/emboj.2011.401
UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
Jin Zhang, Ivan Khvorostov, Jason S Hong, et al.
It has been assumed, based largely on morphologic evidence, that human pluripotent stem cells (hPSCs) contain underdeveloped, bioenergetically inactive mitochondria. In contrast, differentiated cells harbour a branched mitochondrial network with oxidative phosphorylation as the main energy source. A role for mitochondria in hPSC bioenergetics and in cell differentiation therefore remains uncertain. Here, we show that hPSCs have functional respiratory complexes that are able to consume O2 at maximal capacity. Despite this, ATP generation in hPSCs is mainly by glycolysis and ATP is consumed by the F1F0 ATP synthase to partially maintain hPSC mitochondrial membrane potential and cell viability. Uncoupling protein 2 (UCP2) plays a regulating role in hPSC energy metabolism by preventing mitochondrial glucose oxidation and facilitating glycolysis via a substrate shunting mechanism. With early differentiation, hPSC proliferation slows, energy metabolism decreases, and UCP2 is repressed, resulting in decreased glycolysis and maintained or increased mitochondrial glucose oxidation. Ectopic UCP2 expression perturbs this metabolic transition and impairs hPSC differentiation. Overall, hPSCs contain active mitochondria and require UCP2 repression for full differentiation potential.
5. »áÉøÍ¸ºìϸ°ûÌìÉúËØEPOµÄѪ¹Ü
¡¾¶¯Ì¬¡¿
¡¡¡¡¼¸Ê®ÄêÀ´£¬×ÔÉí¼ä½ÓÌåÄÚ»ùÒòÖÎÁƱ»¼Ù¶¨Îª×¢ÉäÖØ×éÂѰ׵ÄÌæ»»ÒªÁ졣Ȼ¶ø£¬ÓÐÓõĽ«ÏÈǰȡ×Ô»¼ÕßµÄϸ°ûÔÙÒÆÖ²»ØÈ¥ÌôÕ½ºÜ´ó¡£ÃÀ¹ú¿ÆÑ§¼Òͨ¹ý»ùÒò¹¤³Ì½«Ìض¨Ö¸ÁîÒýÈëÁËѪ¹Ü×é֯ϸ°ûÖУ¬¹¹½¨ÁËÈËÌåѪԴÄÚÆ¤Ï¸°ûϵÐγÉϸ°û£¨ECFCs£©ÔÚËÄ»·Ëص÷Àíϵͳ¿ØÖÆÏ±í´ïEPO£¬²¢ÔÚÃâÒßȱÏÝÀÏÊóÖн¨ÉèÁËÆ¤ÏÂѪ¹ÜÍøÂçÄܹ»ÏµÍ³µÄÊÍ·ÅEPO¡£ÕâЩÒÔECFCsΪÄÚÍâòµÄѪ¹ÜÍøÂçÐγÉÁËÓëÀÏÊóÂö¹ÜϵͳµÄÓÐÓÃÎǺϣ¬Ê¹µÃÖØ×éµÄEPO¿ÉÒÔÖ±½ÓÊͷŵ½ÑªÁ÷ÖС£EPO±í´ï¼¤»îºó£¬ÔÚÕý³£ºÍѪÐéÀÏÊóÖж¼ÓÕµ¼Á˺ìϸ°ûÌìÉú¡£ÕâÒ»Àú³ÌÄܹ»ÍêÈ«Äæ×ª¡£¸ÃÒªÁìʹ±§²¡ÈË´ÓÆµÈÔµÄEPO×¢ÉäÖнâ·Å³öÀ´£¬ïÔÌÖÎÁÆÑªÐéµÄÒ½ÁÆÓöȡ£
¡¾µãÆÀ¡¿
¡¡¡¡Í¨¹ý»ùÓÚÄÚÆ¤Ï¸°ûϵÐγÉϸ°ûµÄ»ùÒòÔËËÍÕ½ÂÔ£¬½¨ÉèÁË¿ÉÒÔµ÷¿ØµÄEPOÌåÄÚ±í´ïºÍÖ±½ÓÊÍ·ÅÈëѪÁ÷µÄϵͳ£¬³ÉΪעÉäÖØ×éÂѰ׵ÄÌæ»»ÒªÁì¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
Blood, 2011; DOI: 10.1182/blood-2011-08-372946
Induction of erythropoiesis using human vascular networks genetically-engineered for controlled erythropoietin release
R.-Z. Lin, A. Dreyzin, K. Aamodt, et al.
For decades, autologous ex vivo gene therapy has been postulated as a potential alternative to parenteral administration of recombinant proteins. However, achieving effective cellular engraftment of previously retrieved patient cells is challenging. Recently, our ability to engineer vasculature in vivo has allowed for the introduction of instructions into tissues by genetically modifying the vascular cells that build these blood vessels. In the present study, we genetically engineered human blood¨Cderived endothelial colony-forming cells (ECFCs) to express erythropoietin (EPO) under the control of a tetracycline-regulated system, and generated subcutaneous vascular networks capable of systemic EPO release in immunodeficient mice. These ECFC-lined vascular networks formed functional anastomoses with the mouse vasculature, allowing direct delivery of recombinant human EPO into the bloodstream. After activation of EPO expression, erythropoiesis was induced in both normal and anemic mice, a process that was completely reversible. This approach could relieve patients from frequent EPO injections, reducing the medical costs associated with the management of anemia. We propose this ECFC-based gene-delivery strategy as a viable alternative technology when routine administration of recombinant proteins is needed.
6. Ö×ÁöÉú³¤Àë²»¿ª·Ö×ÓÅóٽ鵼µÄ×ÔÊÉ
¡¾¶¯Ì¬¡¿
¡¡¡¡Ï¸°û×ÔÊɹØÓÚά³Ö²¸È鶯Îïϸ°ûµÄÎȹ̺ÍÉúÎïÄÜѧºÜÊÇÖ÷Òª¡£Á½ÖÖÑо¿µÄ×îÇåÎúµÄ×ÔÊÉ»úÖÆÊÇ´ó×ÔÊɺͷÖ×ÓÅóٽ鵼µÄ×ÔÊÉ£¨CMA£©¡£´ó×ÔÊɵÄÐÐΪת±äÔÚ°©Ï¸°ûºÍʵÌåÁöÖÐÒÑÓÐÐÎò£¬ÒÖÖÆ´ó×ÔÊÉ»áÔö½øÖ×ÁöÐγɡ£Õý³£Ï¸°ûͨ¹ýÉϵ÷CMA;¾¶À´¶ÔÒÖÖÆ´ó×ÔÊÉ×÷³ö·´Ó¦¡£ÃÀ¹ú¿ÆÑ§¼ÒµÄ×îÐÂÑо¿Åú×¢ÔÚ²î±ðÀàÐ͵ݩϸ°ûÖж¼ÓÐCMAÉϵ÷ÇÒÓë´ó×ÔÊÉ״̬Î޹أ¬ÁíÍâÔÚ²î±ðÀàÐͺÍȪԴµÄÈËÌåÖ×ÁöÖÐCMA×é·Ö¶¼ÓÐÔöÌí¡£ÌåÍⰩϸ°ûÔöÖ³ÐèÒªCMA£¬ÓÉÓÚËüά³Ö¶ñ±äϸ°ûµÄ´úлת±äÌØÕ÷¡£ÔÚÀÏÊóÖÐÓÃÈ˷ΰ©Ï¸°ûÒìÖÖÒÆÖ²£¬ÕâЩ¿ÆÑ§¼Ò֤ʵÎúÌåÄÚ°©Ï¸°û¶ÔCMAµÄÒÀÀµÐÔ¡£ÒÖÖÆCMAÑÓ»ºÁËÒÖÖÆÖ×ÁöµÄÉú³¤£¬ïÔÌÁ˰©×ªÒƵÄÊýÄ¿£¬²¢ÓÕµ¼ÀÏÊóÖÐÒÑÒÆÖ²µÄÈ˷ΰ©×éÖ¯µÄήËõ¡£ÀàËÆµÄ´¦Öóͷ£Ò²ïÔÌÁËÁ½ÖÖ²î±ðÀàÐ͵ÄÐþÉ«ËØÁöϸ°ûϵµÄÉú³¤µÄÊÂʵÒâζ×ÅÕë¶Ô¸Ã×ÔÊÉ;¾¶¿ÉÄÜÓйãÆ×µÄ¿¹Ö×ÁöDZÁ¦¡£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑоÍЧ¹ûÅú×¢Ö×ÁöÉú³¤Àë²»¿ª·Ö×ÓÅóٽ鵼µÄϸ°û×ÔÊÉ£¬´Ó¶øÎª°©Ö¢ÖÎÁÆÌṩÁËеÄÑо¿Æ«Ïò¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
Science Translational Medicine, 2011; 3 (109): 109ra117
Chaperone-Mediated Autophagy Is Required for Tumor Growth
Maria Kon, Roberta Kiffin, Hiroshi Koga, et al.
The cellular process of autophagy (literally ¡°self-eating¡±) is important for maintaining the homeostasis and bioenergetics of mammalian cells. Two of the best-studied mechanisms of autophagy are macroautophagy and chaperone-mediated autophagy (CMA). Changes in macroautophagy activity have been described in cancer cells and in solid tumors, and inhibition of macroautophagy promotes tumorigenesis. Because normal cells respond to inhibition of macroautophagy by up-regulation of the CMA pathway, we aimed to characterize the CMA status in different cancer cells and to determine the contribution of changes in CMA to tumorigenesis. Here, we show consistent up-regulation of CMA in different types of cancer cells regardless of the status of macroautophagy. We also demonstrate an increase in CMA components in human cancers of different types and origins. CMA is required for cancer cell proliferation in vitro because it contributes to the maintenance of the metabolic alterations characteristic of malignant cells. Using human lung cancer xenografts in mice, we confirmed the CMA dependence of cancer cells in vivo. Inhibition of CMA delays xenograft tumor growth, reduces the number of cancer metastases, and induces regression of existing human lung cancer xenografts in mice. The fact that similar manipulations of CMA also reduce tumor growth of two different melanoma cell lines suggests that targeting this autophagic pathway may have broad antitumorigenic potential.