Ò»¾º¼¼

English Ò»¾º¼¼¼¯ÍÅÆóÒµÓÊÏä

ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨ÈýÊ®Áù£©

2010Äê-12ÔÂ-19ÈÕ ÈªÔ´£ºmebo

£¨12.13-12.19/2010£©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úР

 ¡¡¡¡±¾Öܶ¯Ì¬°üÀ¨ÒÔÏÂÄÚÈÝ£ºÈËÌå¶àÐÑĿϸ°ûÌåÍⶨÏò·Ö½âÐγɳ¦×éÖ¯£»CRTC3»ùÒò¿É·ÅÂýÖ¬·¾ÏûºÄËÙÂÊ£»·¢Ã÷ÄÜÏÔÖø¼õ»ºÉúÎïÖӵϝºÏÎ½µµÍ»ùÖÊÓëϸ°ûµÄ»úеÁ¦¿Éʹ¸Éϸ°û¼á³ÖÔÚ¶àÄÜ״̬£»p53ʧ»îʹ°©Ï¸°û»ñµÃ¸Éϸ°ûÌØÕ÷£»¹ûÓ¬ÉúÖ³¸Éϸ°û·Ö½âлúÖÆ¡£

1. ÈËÌå¶àÐÑĿϸ°ûÌåÍⶨÏò·Ö½âÐγɳ¦×éÖ¯
¡¾ÕªÒª¡¿
¡¡¡¡¾ÝÃÀ¹úÎïÀíѧ¼Ò×éÖ¯Íø12ÔÂ13ÈÕ±¨µÀ£¬ÃÀ¹ú¿ÆÑ§¼ÒÊ×´ÎÔÚʵÑéÊÒÖн«ÈËÌå¶àÐÑĿϸ°ûÄð³ÉÁ˹¦Ð§ÐÔµÄÈËÌ峦µÀ×éÖ¯¡£ÐÁÐÁÄÇÌá¶ùͯҽԺҽѧÖÐÐĵĿÆÑ§¼ÒÔÚ12ÈÕ³öÊéµÄ¡¶×ÔÈ»¡·ÔÓÖ¾ÔÚÏß°æÉÏÌåÏÖ£¬×îÐÂÍ»ÆÆÎªÈËÌ峦µÀµÄ·¢Óý¡¢¹¦Ð§ºÍÓйؼ²²¡µÄÑо¿·­¿ªÁËÒ»ÉÈ´óÃÅ£¬²¢ÓÐÍûÑÐÖÆ³öÓÃÓÚÒÆÖ²µÄ³¦µÀ×éÖ¯¡£¸ÃÑо¿Ö÷ÒªÈÏÕæÈË¡¢ÐÁÐÁÄÇÌá¶ùͯҽԺ·¢ÓýÉúÎïѧ·Ö²¿¸ß¼¶Ñо¿Ô±Õ²Ä·Ë¹¡¤Íþ¶û˹ÌåÏÖ£¬ÕâÊÇ¿ÆÑ§¼ÒÊ×´Î֤ʵ£¬Æ¤ÊÏ×÷ÓýÃó£¨ÓÃ×÷ϸ¾ú×÷ÓýµÄÓиDz£Á§µú£©ÖÐÈËÌå¶à¹¦Ð§¸Éϸ°ûÄÜת±äΪ¾ßÓÐÈýά¼Ü¹¹¡¢Ï¸°û×é³ÉÒòËØÍ¬ÈËÌ峦×éÖ¯ºÜÊÇÀàËÆµÄÈËÌå×éÖ¯¡£½«¸Éϸ°ûÄð³É³¦µÀ×éÖ¯×îÖÕ»áÈÃî¾»¼»µËÀÐÔС³¦½á³¦Ñס¢Ñ×ÐÔ³¦²¡¡¢¶Ì³¦×ÛºÏÕ÷µÄ²¡ÈË´ó´óÊÜÒæ¡£
¡¡¡¡Íþ¶û˹ÍŶÓÔÚÑо¿ÖÐʹÓÃÁËÁ½Àà¶à¹¦Ð§¸Éϸ°û£ºÀ´×ÔÓÚ¼¸¸öÔ´óµÄÈËÌåÅßÌ¥¸Éϸ°û£¨hESCs£©ºÍ»ùÓÚÈËÌ寤·ôϸ°ûµÄÓÕµ¼¶à¹¦Ð§¸Éϸ°û£¨iPSCs£©¡£hESCsÄܱäΪÈËÌåÄÚ200¶àÖÖϸ°ûÀàÐÍÖеÄÈκÎÒ»ÖÖ£¬Òò´ËÒ²±»³ÆÎª¶à¹¦Ð§¸Éϸ°û¡£iPSCs¿ÉÒÔʹÓò¡È˵Äϸ°ûÀ´»ñµÃ£¬ÒòÓµÓиò¡È˵ÄÒÅ´«ÒòËØ¶ø²»»á±¬·¢ÇãÔþ·´Ó¦¡£Íþ¶û˹ڹÊ͵½£¬ÓÉÓÚiPSCsÊÖÒÕºÜÊÇÐÂÓ±£¬ÆäÊÇ·ñ¾ßÓÐhESCsËùÓµÓеÄËùÓÐDZÄÜÕÕ¾Éδ½âÖ®ÃÕ£¬Òò´Ë£¬Ñо¿Ö°Ô±ÔÚ±¾´ÎʵÑéÖÐʹÓÃÁËÕâÁ½ÖÖ¸Éϸ°û£¬ÒÔ½øÒ»²½²âÊԺͽÏÁ¿ÕâÁ½ÖÖ¸Éϸ°ûת»¯ÎªÆäËûϸ°ûµÄÄÜÁ¦¡£ÎªÁ˽«¶à¹¦Ð§¸Éϸ°ûÄð³É³¦µÀ×éÖ¯£¬¿ÆÑ§¼ÒʹÓû¯Ñ§ÎïÖʺÍÉú³¤Òò×ÓÂѰ׾ÙÐÐÁËһϵÁÐϸ°û²Ù×÷£¬ÔÚʵÑéÊÒÖÐÄ£Äâ³öÁËÅßÌ¥³¦µÄ·¢ÓýÀú³Ì¡£¿ÆÑ§¼ÒÊ×ÏȽ«¶à¹¦Ð§¸Éϸ°ûÄð³ÉÃûΪ¶¨ÐÍÄÚÅß²ãµÄÅß̥ϸ°û£¬½Ó׎«Åß̥ϸ°ûÄð³ÉÁËÃûΪ¡°ºó³¦¶¨Ïò×æÏ¸°û¡±µÄÅßÌ¥³¦Ï¸°û¡£Ëæºó£¬ËûÃǽ«ÅßÌ¥³¦Ï¸°ûÌá½»¸øÔö½ø³¦·¢ÓýµÄ¡°Ç׳¦¡±Ï¸°û×÷Óý×°Öá£28Ììºó£¬¿ÆÑ§¼Ò»ñµÃÁËÀàËÆÓÚÌ¥¶ù³¦µÄ³ÉÐÍÈýά×éÖ¯£¬ÕâÖÖ×éÖ¯°üÀ¨³¦µÀËùÓеÄÖ÷Ҫϸ°û£¬°üÀ¨³¦ÉÏÆ¤Ï¸°û¡¢ÅÁÄÚÌØÏ¸°ûºÍ³¦ÄÚÉøÍ¸Ï¸°û¡£Õâ¸ö×éÖ¯»áÒ»Á¬³ÉÊ죬»ñµÃÕý·²ÈËÌ峦×éÖ¯ÓµÓеÄÎüÊÕºÍÉøÍ¸¹¦Ð§£¬²¢»áÐγɳ¦ÌØÒìÐÔ¸Éϸ°û¡£
¡¡¡¡Íþ¶û˹ÌåÏÖ£¬Õâ¸öÀú³Ì¿ÉÒÔ×÷ΪÈËÌ峦·¢ÓýµÄÑо¿¹¤¾ß£¬Ò²¿É×ÊÖú¿ÆÑ§¼ÒÏàʶÈËÌ峦µÀÔÚÉú²¡ºóµÄת±ä¡£ÓÉÓڴ󲿷ֿڷþÒ©¶¼Í¨¹ý³¦µÀÎüÊÕʩչ×÷Ó㬸ÃÍ»ÆÆ»¹½«ÓÐÖúÓÚ¿ÆÑ§¼ÒÉè¼Æ³ö¸üºÃµÄ¡¢¸üÈÝÒ×ÎüÊյĿڷþÒ©Îï¡£Ñо¿Ö°Ô±½ÓÏÂÀ´½«¾ÙÐж¯ÎïʵÑ飬ÑéÖ¤¸Ã³¦×éÖ¯ÊÇ·ñ¿ÉÒÔÓÐÓõØÓÃÓÚÒÆÖ²ÊÖÊõÖУ¬²¢×îÖÕÓÃÀ´ÖÎÁÆî¾»¼³¦µÀ¼²²¡µÄ²¡ÈË¡£

¡¾µãÆÀ¡¿
¡¡¡¡Í¨¹ýÄ£ÄâÅßÌ¥³¦·¢ÓýÌåÍâ×÷Óý¸Éϸ°û·¢ÓýÐγÉÓÐÒ»¶¨¹¦Ð§µÄ³¦×éÖ¯£¬ÊǸÉϸ°ûÉúÎïѧÏò¾ßÓÐÏÖʵӦÓüÛÖµµÄÆ«ÏòÂõ³öµÄÖ÷ÒªÒ»²½£¬Ö»¹ÜÒÀÈ»ÊÜÏÞÓÚÅßÌ¥¸Éϸ°ûºÍÓÕµ¼¶àÐÑĿϸ°ûµÄȪԴºÍÖÊÁ¿¡£

¡¾Ô­ÎÄժ¼¡¿Nature doi:10.1038/nature09691
Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro
Jason R. Spence, Christopher N. Mayhew, Scott A. Rankin, et al.
Studies in embryonic development have guided successful efforts to direct the differentiation of human embryonic and induced pluripotent stem cells (PSCs) into specific organ cell types in vitro1, 2. For example, human PSCs have been differentiated into monolayer cultures of liver hepatocytes and pancreatic endocrine cells3, 4, 5, 6 that have therapeutic efficacy in animal models of liver disease7, 8 and diabetes9, respectively. However, the generation of complex three-dimensional organ tissues in vitro remains a major challenge for translational studies. Here we establish a robust and efficient process to direct the differentiation of human PSCs into intestinal tissue in vitro using a temporal series of growth factor manipulations to mimic embryonic intestinal development10. This involved activin-induced definitive endoderm formation11, FGF/Wnt-induced posterior endoderm pattering, hindgut specification and morphogenesis12, 13, 14, and a pro-intestinal culture system15, 16 to promote intestinal growth, morphogenesis and cytodifferentiation. The resulting three-dimensional intestinal ¡®organoids¡¯ consisted of a polarized, columnar epithelium that was patterned into villus-like structures and crypt-like proliferative zones that expressed intestinal stem cell markers17. The epithelium contained functional enterocytes, as well as goblet, Paneth and enteroendocrine cells. Using this culture system as a model to study human intestinal development, we identified that the combined activity of WNT3A and FGF4 is required for hindgut specification whereas FGF4 alone is sufficient to promote hindgut morphogenesis. Our data indicate that human intestinal stem cells form de novo during development. We also determined that NEUROG3, a pro-endocrine transcription factor that is mutated in enteric anendocrinosis18, is both necessary and sufficient for human enteroendocrine cell development in vitro. PSC-derived human intestinal tissue should allow for unprecedented studies of human intestinal development and disease.

2. CRTC3»ùÒò¿É·ÅÂýÖ¬·¾ÏûºÄËÙÂÊ
¡¾ÕªÒª¡¿ ȪԴ£ºÐ»ªÍø Ðû²¼Ê±¼ä£º2010-12-17 11:18:28
¡¡¡¡ÎªÊ²Ã´Ò»Ð©ÈËÃãÁ¦¿ØÖÆÒûʳÒÀÈ»·ÊÅÖ£¿ÎªÊ²Ã´Ò»Ð©È˳Եò»ÉÙÕÕÑùÃçÌõ£¿Ãյ׿ÉÄÜÔÚ»ùÒòÖС£ÃÀ¹úÒ»¸öÑо¿Ð¡×é·¢Ã÷£¬Ò»ÖÖÃûΪCRTC3µÄ»ùÒò¿ÉÒÔ·ÅÂýÖ¬·¾ÏûºÄËÙÂÊ¡£ÈËÌåÈôȱ·¦ÕâÖÖ»ùÒò£¬ÔòÖ¬·¾ÏûºÄ¿ì£¬½ûÖ¹Ò×·¢ÅÖ¡£Ë÷¶û¿ËÉúÎïÑо¿ËùÉúÎïѧ¼ÒÂí¿Ë¡¤ÃÉÌØÃ×ÄáÏòµ¼µÄÑо¿Ð¡×é·¢Ã÷£¬Í¨Ë×ÀÏÊóºÍËðʧCRTC3»ùÒòµÄÀÏÊóÕý³£½øÊ³Ê±£¬Á½ÕßÌåÖØÎ´±¬·¢ÏÔ×Åת±ä¡£µ«Î¹ËüÃdzԸßÈÈÁ¿Òûʳºó£¬Ö»ÓÐÕý³£ÀÏÊó·¢ÅÖ¡£ÁíÍ⣬ËðʧCRTC3»ùÒòµÄÀÏÊóרɫ֬·¾Ï¸°ûÊýÄ¿ÊÇͨË×ÀÏÊóµÄÁ½±¶¡£×ØÉ«Ö¬·¾Ï¸°ûȼÉÕ°×ɫ֬·¾Ï¸°ûÖеÄÖ¬·¾£¬±¬·¢ÈÈÁ¿£¬Î¬³Ö¶¯ÎïÌåΡ£Ò»Ð©Ñо¿ÏÔʾ£¬Éí¶ÎÆ«ÊÝÕßרɫ֬·¾Ï¸°ûº¬Á¿¸ßÓÚÆ«ÅÖÕß¡£ÃÉÌØÃ×Äá¸æËßÖðÈÕ¿ÆÑ§ÍøÕ¾£º¡°CRTC3¿ÉÄÜÊÇ¿ØÖÆ×ØÉ«Ö¬·¾Ï¸°ûÊýÄ¿µÄ¿ª¹Ø£¬ÈôÊÇÄܱ¬·¢¸ü¶àרɫ֬·¾Ï¸°û£¬¾Í¿ÉÄÜ¿ØÖÆ·ÊÅÖ¡£¡±Ñо¿Ö°Ô±½ÏÁ¿Á½×éÄ«Î÷¸çÒáÃÀ¹úÈ˵ÄÌåÖØºó·¢Ã÷£¬CRTC3»ùÒò»îÔ¾µÄÒ»×鯫ÅÖ¡£
¡¡¡¡ÃÉÌØÃ×ÄáÆÊÎö£¬ÈËÀàÔÚ½ø»¯Àú³ÌÖУ¬Éú³¤³öÓ¦¶Ô¼¢¶öµÄ»úÖÆ£¬¼´¾­ÓÉCRTC3ÕâÀà»ùÒòµÄ±í´ï£¬·ÅÂýȼÉÕÖ¬·¾µÄËÙÂÊ¡£ÕâÖÖ»úÖÆ¶ÔÈËÀà׿ÏÈÒâÒåÖØ´ó£¬ÓÉÓÚËûÃÇÍùÍù³Ô±¥Ò»¶ÙÒªµÈºÃ³¤Ò»¶Îʱ¼ä²Å»ªÁÔÈ¡µ½Ï¶ÙʳÎÐèÒªÔÚÉíÌåÄÚ´æÖüÈÈÁ¿¡£ÄÇЩÌåÄÚ¡°Ê¡³Ô»ùÒò¡±»îÔ¾µÄÈ˾ßÓÐÉúÑÄÓÅÊÆ£¬¿ÉÒÔ³¤Ê±¼ä²»³Ô¹¤¾ß´æ»î¡£¶ÔÏÖ´úÈ˶øÑÔ£¬ÕâÖÖ»úÖÆ¿ÉÄÜÊÇÒ»ÖÖÀÛ׸£¬¿ÉÄܵ¼ÖÂÖ¬·¾ÔÚÌåÄÚȺ¼¯£¬Íþв¿µ½¡¡£¿ÆÑ§¼ÒÉÏÊÀ¼Í60ÄêÔ¾ÍÏëµ½ÈËÌåÄÚ¿ÉÄܱ£´æ¡°Ê¡³Ô»ùÒò¡±£¬Æäʱ¶Ô»ùÒòµÄÊìϤԶ²»ÈçÏÖÔÚ¡£
 ¡¡¡¡ÃÉÌØÃ×ÄáÏòµ¼µÄÑо¿Ð¡×éÏ£ÍûËûÃǵķ¢Ã÷¸øÖÎÁÆ·ÊÅÖÖ¢¡¢ïÔÌ­ÈËÃÇ»¼ÌÇÄò²¡µÈ¼²²¡Î£º¦¿ªÍØÒ»Ìõз¡£»ùÓÚÕâÏîÑо¿£¬ÖÆÒ©ÆóÒµ¿ÉÒÔ¿ª·¢Ò©ÎïÒÖÖÆCRTC3»ùÒòµÄ×÷Óá£Ò½Éú¿ÉÒÔ´ÓһСÎÒ˽¼ÒÌåÄÚCRTC3»ùÒò»îÔ¾Ë®Æ½ÕÆÎÕÕâСÎÒ˽¼Ò»¼·ÊÅÖ֢Σº¦ÊÇ·ñÆ«¸ß£¬´Ó¶ø½ÓÄÉÓ¦¶Ô²½·¥¡£²¢·ÇËùÓÐÌåÄÚCRTC3»ùÒò»îÔ¾µÄÈ˶¼Ç÷Ïò·¢ÅÖ£¬ÀýÈ磬Ñо¿Ö°Ô±Î´·¢Ã÷ÕâÖÖ»ùÒòÓëÃÀ¹ú°×ÈËÌåÖØÖ®¼ä±£´æ¹ØÁª¡£Ñо¿Ö°Ô±ÒÔΪ£¬ÉúÑÄÇéÐκÍÉúÑÄ·½·¨Í¬Ñù»áÓ°ÏìÌåÖØ¡£ÃÉÌØÃ×Äá˵£º¡°ÖÎÁÆÌÇÄò²¡»ò·ÊÅÖÖ¢µÄÒªÁìÓ¦¸ÃÒòÈ˶øÒì¡£¡±ÖðÈÕ¿ÆÑ§ÍøÕ¾µÄÊý¾ÝÏÔʾ£¬7200ÍòÃÀ¹ú³ÉÄêÈËÊÜ·ÊÅÖÖ¢À§ÈÅ¡£

¡¾µãÆÀ¡¿
»ùÒò¶Ô·ÊÅÖµÄÓ°ÏìÒ»¶¨±£´æ£¬µ«²»ÊÇËùÓУ¬²¢ÇÒÒòÈ˶øÒ죬ºóÌìµÄÇéÐÎÓ°ÏìÒ²²»¿ÉСêï¡£

¡¾Ô­ÎÄժ¼¡¿Nature 468: 933¨C939£¬ doi:10.1038/nature09564
CRTC3 links catecholamine signalling to energy balance
Youngsup Song, Judith Altarejos, Mark O. Goodarzi, et al.
The adipose-derived hormone leptin maintains energy balance in part through central nervous system-mediated increases in sympathetic outflow that enhance fat burning. Triggering of ¦Â-adrenergic receptors in adipocytes stimulates energy expenditure by cyclic AMP (cAMP)-dependent increases in lipolysis and fatty-acid oxidation. Although the mechanism is unclear, catecholamine signalling is thought to be disrupted in obesity, leading to the development of insulin resistance. Here we show that the cAMP response element binding (CREB) coactivator Crtc3 promotes obesity by attenuating ¦Â-adrenergic receptor signalling in adipose tissue. Crtc3 was activated in response to catecholamine signals, when it reduced adenyl cyclase activity by upregulating the expression of Rgs2, a GTPase-activating protein that also inhibits adenyl cyclase activity. As a common human CRTC3 variant with increased transcriptional activity is associated with adiposity in two distinct Mexican-American cohorts, these results suggest that adipocyte CRTC3 may play a role in the development of obesity in humans.

3. ·¢Ã÷ÄÜÏÔÖø¼õ»ºÉúÎïÖӵϝºÏÎï
¡¾ÕªÒª¡¿ ÖйúÈÕ±¨Íø Ðû²¼Ê±¼ä£º2010-12-17 12:29:44
¡¡¡¡¾ÝÃÀ¹úÎïÀíѧ¼Ò×éÖ¯Íø12ÔÂ14ÈÕ±¨µÀ£¬ÃÀ¹úÑо¿Ö°Ô±ÔÚʹÓÃ×Ô¶¯É¸Ñ¡ÊÖÒÕѰÕÒÐÂҩƷʱ£¬·¢Ã÷ÁËÒ»ÖÖÄÜÏÔÖø¼õ»ºÉúÎïÖӵķÖ×Ó»¯ºÏÎ½«ÆäÃüÃûΪ¡°°×Ìì×ïÐС±¡£ÕâÒ»·¢Ã÷ÓÐÍû±»ÓÃÀ´¿ª·¢ÐÂÒ©Æ·£¬×ÊÖúÐèÒªµ¹Ê±²îµÄ¿ÕÖзÉÈ˺ÍÑÏÖØË¯ÃßÕϰ­»¼Õß¡£Ïà¹ØÂÛÎĽÒÏþÓÚ¡¶¹«¹²¿ÆÑ§Í¼Êé¹Ý¡ªÉúÎïѧ¡·£¨PLoS Biology£©¡£
¡¡¡¡´ËÏîÑо¿ÓÉÃÀ¹ú¼ÓÀû¸£ÄáÑÇ´óѧʥµØÑǸç·ÖУÉúÎï¿ÆÑ§ÔºÔº³¤Ê·µÙ·ò¡¤¿­µÄʵÑéÊÒÖ÷µ¼¡£ÊµÑéÖУ¬ËûÃǽ«ÉúÎïÖÓ»ùÒò¼ÓÈëµ½¿Éʹө»ð³æ·¢¹âµÄÓ«¹âËØÃ¸»ùÒòÖУ¬È»ºó½«ÆäÖ²ÈëÈ˵Ĺǰ©Ï¸°ûÖУ¬ÕâÑù¹Ç°©Ï¸°û¾Í¿ÉÒÔÔÚÉúÎïÖÓ±»¼¤»îʱ·¢¹â£¬´Ó¶ø¿ÉÒÔÖ±¹ÛµØµÃ֪ϸ°ûÉúÎïÖÓµÄת±ä¡£ÔÚÊÓ²ìÁ˶à´ï12ÍòÖÖ¿ÉÄܵϝºÏÎïÓëÈËÀà¹Ç°©Ï¸°û±¬·¢µÄ·´Ó¦ºó£¬Ñо¿Ö°Ô±É¸Ñ¡³öÁË¡°°×Ìì×ïÐС±¡£ÔÚÀÏÊóºÍÓ×Äê°ßÂíÓãÉíÉÏ£¬Ñо¿Ö°Ô±Í¬Ñù·¢Ã÷ÕâÖÖ·Ö×Ó»¯ºÏÎïÄÜÏÔÖø¼õÂýËüÃǵÄÉúÎïÖÓ¡£Ö®ºó£¬Ê·µÙ·òµÄÍŶӽ«¸ôÀë³öµÄ¡°°×Ìì×ïÐС±·Ö×Ó½»¸øÁíÒ»¼äʵÑéÊҵĿÆÑ§¼Ò×ö½øÒ»²½Ñо¿£¬Ò²µÃ³öÁËͬÑùµÄ½áÂÛ¡£ÓмøÓÚ´Ë£¬Ê·µÙ·ò×ÔÐŵØÌåÏÖ£º¡°´ÓÀíÂÛÉÏÀ´Ëµ£¬¡®°×Ìì×ïÐС¯¿ÉÒÔÓÃÓÚÖÎÁÆË¯ÃßÕϰ­¡£¡±

¡¾µãÆÀ¡¿
¡¡¡¡Ó°ÏìÉúÎïÖÓ»ùÒòµÄ»¯ºÏÎï¼È¿ÉÄÜÖÎÁÆË¯ÃßÕϰ­£¬Ò²¿ÉÄÜÈÅÂÒÉúÎï½ÚÂÉ£¬×÷ΪÈ˹¤¸ÉÔ¤»ùÒòÔ˶¯µÄЧ¹ûÈËÀ໹ûÓÐÕÆÎÕÍêÈ«ÕÆ¿Ø¡£

¡¾Ô­ÎÄժ¼¡¿PLoS Biol 8(12): e1000559 doi:10.1371/journal.pbio.1000559
High-Throughput Chemical Screen Identifies a Novel Potent Modulator of Cellular Circadian Rhythms and Reveals CKIa as a Clock Regulatory Kinase
Hirota T, Lee JW, Lewis WG, et al.
The circadian clock underlies daily rhythms of diverse physiological processes, and alterations in clock function have been linked to numerous pathologies. To apply chemical biology methods to modulate and dissect the clock mechanism with new chemical probes, we performed a circadian screen of ~120,000 uncharacterized compounds on human cells containing a circadian reporter. The analysis identified a small molecule that potently lengthens the circadian period in a dose-dependent manner. Subsequent analysis showed that the compound also lengthened the period in a variety of cells from different tissues including the mouse suprachiasmatic nucleus, the central clock controlling behavioral rhythms. Based on the prominent period lengthening effect, we named the compound longdaysin. Longdaysin was amenable for chemical modification to perform affinity chromatography coupled with mass spectrometry analysis to identify target proteins. Combined with siRNA-mediated gene knockdown, we identified the protein kinases CKI¦Ä, CKI¦Á, and ERK2 as targets of longdaysin responsible for the observed effect on circadian period. Although individual knockdown of CKI¦Ä, CKI¦Á, and ERK2 had small period effects, their combinatorial knockdown dramatically lengthened the period similar to longdaysin treatment. We characterized the role of CKI¦Á in the clock mechanism and found that CKI¦Á-mediated phosphorylation stimulated degradation of a clock protein PER1, similar to the function of CKI¦Ä. Longdaysin treatment inhibited PER1 degradation, providing insight into the mechanism of longdaysin-dependent period lengthening. Using larval zebrafish, we further demonstrated that longdaysin drastically lengthened circadian period in vivo. Taken together, the chemical biology approach not only revealed CKI¦Á as a clock regulatory kinase but also identified a multiple kinase network conferring robustness to the clock. Longdaysin provides novel possibilities in manipulating clock function due to its ability to simultaneously inhibit several key components of this conserved network across species.

4. ½µµÍ»ùÖÊÓëϸ°ûµÄ»úеÁ¦¿Éʹ¸Éϸ°û¼á³ÖÔÚ¶àÄÜ״̬
¡¾ÕªÒª¡¿ Sciencedaily  2010-12-17 9:31:11
¡¡¡¡¿ËÈÕÒÁÀûŵ´óѧµÄÑо¿Ö°Ô±·¢Ã÷ÁËÒ»ÖÖÐÂÒªÁì¿Éʹ¸Éϸ°ûºã¾Ãά³ÖÔÚÖÐÐÄ״̬¡£Ñо¿ÂÛÎĽÒÏþÔÚ PLoS OneÔÓÖ¾ÉÏ¡£ÔÚÂÛÎÄÖÐÑо¿Ö°Ô±³ÆËûÃÇʹÓÃÒ»ÖÖÈíÄý½º×÷ÓýСÊóÅßÌ¥¸Éϸ°û(mESCs)¿Éʹϸ°ûºã¾Ãά³ÖÔÚ¶àÄÜ״̬¡£²¢ÇÒÎÞÐè¼ÓÈëÌÚ¹óµÄÉú³¤Òò×Ó£¬ÕâÖÖÈí»ùÖÊÄÜÔںܳ¤Ò»¶Îʱ¼äÄÚά³ÖͬÖʿˡµÄÉú³¤¡£¡°ÕâÒ»ÊÖÒÕÔÚδÀ´µÄÔÙÉúҽѧÖÐÓÐ×ÅÖØ´óµÄÓ¦ÓÃÔ¶¾°£¬¡±Ñо¿µÄÅäºÏÈÏÕæÈË¡¢Ò½Ñ§¿ÆÑ§ºÍ¹¤³Ìѧ½ÌÊÚNing Wang˵£º¡°ÕâÊÇÒ»¸ö¹ÄÎèÈËÐĵÄЧ¹û¡£ÎÒÃǵÄÑо¿Ð§¹ûÅú×¢ÎÒÃdz¯×ÅÕ¹ÏÖ¸Éϸ°ûµÄ»ù±¾ÉúÎïѧÂõ³öÁËÖ÷ÒªµÄÒ»²½¡£¡±
¡¡¡¡ÔÚ¸Éϸ°ûÑо¿Öн«mESCά³ÖÔÚ¾ùÒ»µÄ¶àÄÜ״̬ÊÇÒ»¼þºÜÊÇÄÑÌâµÄÊÂÇé¡£¶àÐÑĿϸ°û¿É×Ô¾õµØ·Ö½â£¬×ª±äΪרÃÅ»¯µÄ×éÖ¯ÀàÐÍÀýÈçÆ¤·ô»ò¼¡Èâ¡£ºã¾ÃÒÔÀ´Ñо¿Ö°Ô±¶¼ÊÇʹÓÃÉú³¤Òò×ÓÀ´Î¬³ÖmESCsµÄ״̬ÎȹÌ£¬¿ÉÊǼ´±ãÔÆÔÆ²»¾ÃÖ®ºó×÷Óýϸ°ûÕÕ¾É»á½øÈë²î±ðµÄ·Ö½â½×¶Î£¬·ºÆð²î±ðµÄ»ùÒò±í´ïºÍÐÎ̬¡£ÑùÆ·µÄ¶àÑùÐÔʹµÃÑо¿Ö°Ô±ºÜÄÑ¿ªÕ¹ÊµÑéÓÕµ¼¸Éϸ°û×÷ÓýÌìÉúÌØ¶¨ÀàÐ͵Ä×éÖ¯¡£¡°ÎÒÃǵÄÄ¿µÄ¾ÍÊÇʹͬÖʵÄδ·Ö½âϸ°û³¯×ÅÎÒÃǸÐÐËȤµÄ×éÖ¯·Ö½â£¬²¢ÇÒһֱʹÕâЩϸ°û¼á³ÖͬÖÊÐÔ£¬¡±ÒÁÀûŵ´óѧ»ùÒò×éÉúÎïѧÑо¿ËùµÄ¶¯Îï¿ÆÑ§½ÌÊÚTanaka˵£º¡°Ö»ÓÐÔÆÔÆ£¬²Å»ªÌìÉúÌØ¶¨µÄϸ°ûÀàÐÍ£¬²¢×îÖÕʵÏÖ¶àÐÑĿϸ°ûµÄÁÙ´²Ó¦Óᣡ±
¡¡¡¡ÔÚÐÂÑо¿ÖÐÑо¿Ö°Ô±·¢Ã÷¶àÄÜmESCs¸üÇãÏòÓÚÕ³¸½ÔÚÒ»ÆðÐγÉÔ²ÐοË¡£¬¶ø¿Ë¡±ßÑØÓë¼áÓ²µÄ×÷ÓýÃó½Ó´¥µÄϸ°ûÔòÏà¶Ô·Ö½âµØ¸ü¿ìһЩ¡£»ùÓÚ´ËÕ÷Ïó£¬Ñо¿Ö°Ô±¾öÒ齫Ñо¿Æ«Ïò¼¯Öе½mESCµÄ»úеѧ¶ø·Ç»¯Ñ§Ñо¿ÉÏ¡£½ø¶øÑо¿Ö°Ô±·¢Ã÷Ïà¹ØÓÚ³ÉÊìµÄϸ°û¸Éϸ°ûÒªÈáÈí10±¶£¬ÓÚÊÇÑо¿Ö°Ô±×îÏÈÖÊÒÉÊÇ·ñÊÇ×÷ÓýÃóºÍϸ°û¼äµÄ»úеÁ¦´Ì¼¤ÁËϸ°û·Ö½â¡£ÔÚÔçÆÚµÄÑо¿ÖÐÍõÄþºÍTanaka֤ʵ×ÝÈ»ÊǺÜСµÄ»úеÁ¦Ò²¿ÉÖ±½ÓÓ°Ïìϸ°ûµÄ·Ö½â¡£ÄÇôÊÇ·ñ¿ÉÒÔʹÓûúеѧÀ´ÒÖÖÆ¸Éϸ°û·Ö½âÄØ£¿Ñо¿Ö°Ô±´óµ¨µØÌá³öÁ˼ÙÉè¡£
¡¡¡¡Ñо¿Ð¡×齫×÷ÓýµÄmESCsϸ°û·Ö³ÉÈý¸ö´¦Öóͷ£×é¾ÙÐÐÆ½ÐÐÊÔÑ飺µÚÒ»×émESCsϸ°ûµÄÓÃͨÀýµÄ¼ÓÈëÉú³¤Òò×ÓµÄ×÷Óý»ù×÷Óý£»Ñо¿Ö°Ô±½«µÚ¶þ×éϸ°û½ÓÖÖÔÚÓëϸ°ûͬÑùÓ²¶ÈµÄÈí½ºÉÏ×÷Óý£¬²¢¼ÓÈëÉú³¤Òò×Ó£»µÚÈý×éµÄϸ°ûͬÑùÔÚÈí½ºÉÏ×÷Óý£¬µ«È´Ã»ÓмÓÈëÉú³¤Òò×Ó¡£Ñо¿Ö°Ô±·¢Ã÷ÔÚÈíÄý½ºÉÏ×÷ÓýµÄϸ°ûÌåÏÖ³ö¸üÇ¿µÄͬÖÊÐԺͶàÄÜÐÔ¡£ÉõÖÁÔÚȱ·¦Òò×ÓÒò×ÓµÄÌõ¼þÏ£¬×÷ÓýÈý¸öÔ£¬´«´ú20´ÎºóÈÔÊÇÔÆÔÆ¡£¡°ÌìÏÂÉϵÄÊÂÎï¶¼ÓÐÁ½ÃæÐÔ¡£ÎÒÃÇÔÚ·¢Ã÷»úеÁ¦¿ÉÒÔÓÕµ¼¸Éϸ°û·Ö½âºó·´ÆäµÀÐÐÖ®£¬Ö¤Êµ½µµÍ»ùÖÊÓëϸ°ûµÄ»úеÁ¦¿Éʹϸ°û¼á³ÖÔÚ¶àÄÜ״̬£¬¡±ÍõÄþ˵£º¡°ÎÒÃǵÄÑо¿Ö¤Êµ»úеÇéÐξßÓÐÓ뻯ѧÉú³¤Òò×ÓÒ»ÑùÖ÷ÒªµÄ×÷Óá£ÔÚÌåÄÚ£¬Ï¸°ûÖ»ÔÚÒ»¶Î¶Ìʱ¼äÄÚÉøÍ¸Éú³¤Òò×Ó¡£¶øÁíÒ»·½Ã棬»úеÁ¦ÔòÒ»Ö±ÔÚÓ°Ïì×Åÿ¸öϸ°û¡£¡±ÔÚ½ÓÏÂÀ´µÄÊÔÑéÖУ¬Ñо¿Ö°Ô±ÏëʵÑéÓÃÓÕµ¼¶àÐÑĿϸ°û(iPSCs)À´½øÒ»²½ÑéÖ¤ËûÃǵÄÈí»ùÖÊ×÷ÓýÒªÁì¡°ÎÒÃǽ«ÊµÑ齫СÊóiPSCs½ÓÖÖµ½Í¬ÑùµÄÈí»ùÖÊÖÐ×÷Óý£¬¿´¿´ÊÇ·ñÄܹ»»ñµÃͬÖʵĸÉϸ°û×÷ÓýÎï¡£ÕâһʵÑéÈôÊÇÄÜÈ¡µÃÀֳɣ¬Æä±¬·¢µÄÓ°Ï콫ÎÞÒÉÊÇÖØ´óµÄ¡£¡± Tanaka˵¡£

¡¾µãÆÀ¡¿
¡¡¡¡Í¨¹ý¿ØÖÆÎïÀí×÷ÓõÄÓ°Ï켫´óµÄË¢ÐÂÁ˸Éϸ°û×÷ÓýµÄÒªÁ죬¹ØÓÚ´ó×Ú»ñµÃ´¦ÓÚ¶àÄÜ״̬µÄ¸Éϸ°ûÓкܴó×ÊÖú£¬ÓÐÀûÓÚÔö½ø¸Éϸ°ûµÄ»ù´¡Ñо¿¡£

¡¾Ô­ÎÄժ¼¡¿PLoS ONE   doi:10.1371/journal.pone.0015655
Soft Substrates Promote Homogeneous Self-Renewal of Embryonic Stem Cells via Downregulating Cell-Matrix Tractions
Farhan Chowdhury, Yanzhen Li, Yeh-Chuin Poh, et al.
Maintaining undifferentiated mouse embryonic stem cell (mESC) culture has been a major challenge as mESCs cultured in Leukemia Inhibitory Factor (LIF) conditions exhibit spontaneous differentiation, fluctuating expression of pluripotency genes, and genes of specialized cells. Here we show that, in sharp contrast to the mESCs seeded on the conventional rigid substrates, the mESCs cultured on the soft substrates that match the intrinsic stiffness of the mESCs and in the absence of exogenous LIF for 5 days, surprisingly still generated homogeneous undifferentiated colonies, maintained high levels of Oct3/4, Nanog, and Alkaline Phosphatase (AP) activities, and formed embryoid bodies and teratomas efficiently. A different line of mESCs, cultured on the soft substrates without exogenous LIF, maintained the capacity of generating homogeneous undifferentiated colonies with relatively high levels of Oct3/4 and AP activities, up to at least 15 passages, suggesting that this soft substrate approach applies to long term culture of different mESC lines. mESC colonies on these soft substrates without LIF generated low cell-matrix tractions and low stiffness. Both tractions and stiffness of the colonies increased with substrate stiffness, accompanied by downregulation of Oct3/4 expression. Our findings demonstrate that mESC self-renewal and pluripotency can be maintained homogeneously on soft substrates via the biophysical mechanism of facilitating generation of low cell-matrix tractions.

5. p53ʧ»îʹ°©Ï¸°û»ñµÃ¸Éϸ°ûÌØÕ÷
¡¾ÕªÒª¡¿
¡¡¡¡p53ÊÇÈËÀàÖ÷ÒªµÄÖ×ÁöÒÖÖÆ»ùÒò£¬Õý³£p53µÄÉúÎï¹¦Ð§Ç¡ËÆ¡°»ùÒò×éÎÀÊ¿¡±,ÔÚG1ÆÚ¼ì²éDNAËðÉ˵㣬¼àÊÓ»ùÒò×éµÄÍêÕûÐÔ¡£µ±»ùÒò×éÔâÊÜËðÉËʱ£¬p53ÂѰ׿É×èÖ¹DNA¸´ÖÆ£¬ÒÔÌṩ×ã¹»µÄʱ¼äʹËðÉËDNAÐÞ¸´£»ÈôÊÇÐÞ¸´Ê§°Ü£¬p53ÂѰ×Ôò»áÒý·¢Ï¸°ûµòÍö¡£µ±p53»ùÒòµÄÁ½¸ö¿½±´¶¼±¬·¢Í»±äʱ£¬Ï¸°ûµÄÔöÖ³»áʧȥ¿ØÖÆ£¬´Ó¶øµ¼ÖÂϸ°û°©±ä¡£¿ËÈÕÀ´×ÔÈø¿ËÉúÎïÑо¿Ñ§ÔººÍÆÕÁÖ˹¶Ù´óѧ¸ß¼¶Ñо¿ËùµÄÑо¿Ö°Ô±ÔÚÅäºÏºÏ×÷µÄÒ»ÏîÑо¿Öз¢Ã÷p53»¹¿ÉÒÖÖÆ°©Ï¸°ûÏò¸ü¸»ÓÚÇÖÏ®ÐԵĸÉϸ°ûÑù״̬ת»¯¡£Ñо¿Ö°Ô±Æ¾Ö¤p53µÄÕâ¸öй¦Ð§½«Æä³ÆÖ®Îª¡°±ÜÃâ»ùÒò×éÖØ±à³ÌµÄÎÀÊ¿£¨Guardian against Genome Reprogramming£©¡±¡£Ñо¿ÂÛÎĽÒÏþÔÚ±¾ÖÜµÄ PNAS ÔÓÖ¾ÉÏ¡£¡°ÖÚËùÖÜÖª£¬µÍ·Ö½â¡¢Ï¸°û¼°ÒÅ´«ÒìÖÊÐÔÊÇÐí¶àÇÖÏ®ÐÔºÍÖÂËÀÐÔ°©Ö¢µÄÖ÷ÒªÌØÕ÷£¬¡±Èø¿ËÉúÎïÑо¿Ëù»ùÒò±í´ïʵÑéÊÒµÄWahl½ÌÊÚ˵µÀ£º¡°×î½üÓпÆÑ§¼ÒÌá³öÕâÐ©ÌØÕ÷ÊÇÓÉÓÚ±£´æ¸Éϸ°ûÑù°©Ï¸°ûËùÖ¡£ÎÒÃǵķ¢Ã÷Åú×¢p53Í»±ä¿ÉʹÖ×Áöϸ°ûÖØÐ»ñµÃ¸Éϸ°ûÑù¡®±à³Ì¡¯¡£¡±¡°°©Ï¸°ûÐèÒª»ñµÃ¸Éϸ°ûµÄÄ³Ð©ÌØÕ÷ÀýÈçÓÀÉúÐԲŻªÉúÑĺÍ˳Ӧһֱת±äµÄÇéÐΡ£ÓÀÉúÄÜÁ¦Ê¹µÃϸ°ûÄܹ»Ò»Ö±×ÔÎÒ¸üУ¬²¢ÄÜÌìÉú¿É·Ö½âΪÆäËûϸ°ûÀàÐ͵Ä×æÏ¸°û£¬¡±Wahl˵£º¡°ËùÓеÄÖ×Áö¶¼ÊÇÓɰ©Ï¸°û×é³ÉµÄ²î±ðµÄϸ°ûȺ¼¯ÎȻ¶øÏÖÔÚÎÒÃÇÉÐÎÞ·¨ÏàʶÖ×ÁöÒìÖÊÐÔÐγɵĻúÖÆ¡£¡±
¡¡¡¡ÒÑÍù¿ÆÑ§¼ÒÃǽ«Ö×ÁöµÄϸ°û¶àÑùÐÔÖ÷Òª¹éÒòÓÚÆä¾ßÓÐÒÅ´«²»ÎȹÌÐÔ¡£Ëæ×ÅÖ×Áöϸ°ûȺÀ©Ôö£¬¸öÌåϸ°û±¬·¢Ëæ»úÍ»±ä£¬Ï¸°ûµÄ·Ö×ÓÌØÕ÷×îÏÈ·ºÆð²î±ð£¬×îÖÕÓɳɰÙÍòµÄ¸÷²»ÏàͬµÄ°©Ï¸°ûÅäºÏ×é³ÉÁËÖ×Áö¡£±ðµÄһЩ¿ÆÑ§¼ÒÃÇ»¹ÒÔΪÖ×ÁöµÄÒìÖÊÐÔÊÇÓÉÓÚÍêÈ«¶¨ÐͺÍÌØ»¯µÄϸ°ûÔÚÖ×Áö±¬·¢ºÍÉú³¤µÄÀú³ÌÖб¬·¢ÁËÈ¥·Ö½âËùÔì³ÉµÄ¡£È»¶ø×îÖÕÕâÒ»ÀíÂÛ±»ÑïÆú£¬È¡¶ø´úÖ®µÄÄ¿½ñÊ¢Ðеİ©¸Éϸ°ûÀíÂÛ¡£°©¸Éϸ°ûÀíÂÛÒÔΪÖ×ÁöÖб£´æÒ»ÀàÖ÷ÒªµÄϸ°û¼´°©¸Éϸ°û¡£ÕâЩ°©¸Éϸ°ûÓпÉÄÜÆðÔ´ÓÚÕý³£¸Éϸ°û»òÔçÆÚ×æÏ¸°û£¬ÓëÆäËûÖ×Áöϸ°û²î±ðËüÃǾßÓÐ×ÔÎÒ¸üеÄÄÜÁ¦²¢¿ÉÏñÕý³£¸Éϸ°ûÒ»ÑùÌìÉú·Ç¸Éϸ°û¡£¡°ÎÒÃǵÄÑо¿Ð§¹ûÅú×¢Óë¸Éϸ°ûÏàËÆµÄ°©Ï¸°û²¢²»ÊÇÔçÆÚÖ×ÁöµÄ×é³É²¿·Ö£¬¶øÊÇÔÚÖ×Áö±¬·¢µÄºóÆÚËæ×Åp53¹¦Ð§µÄËðʧ²Å·ºÆðµÄ£¬¡°ÂÛÎĵÄÅäºÏ×÷Õß¡¢²©Ê¿ºóÑо¿Ö°Ô±Benjamin T. Spike˵£º¡°Ö×ÁöÒìÖÊÐÔÓпÉÄÜÊÇÓÉÓÚÒ»Ö±ÔöÌíµÄ»ùÒò×é²»ÎȹÌÐÔºÍÓë¸Éϸ°ûÑù±íÐÍÏà¹ØµÄ±í¹ÛÒÅ´«²»ÎȹÌÐÔÅäºÏ×÷ÓÃËùÖ¡£¡±
ÔÚÐÂÑо¿ÖÐÑо¿Ö°Ô±Ö¤Êµp53²»Ö¹Ê©Õ¹ÁË¡°»ùÒò×éÎÀÊ¿¡±µÄ¹¦Ð§£¬Õâ¸öÖ×ÁöÒÖÖÆÒò×ÓͬʱÕÕ¾É×è¶ÏÌåϸ°ûÖØ±à³ÌµÄÒ»¸öÖ÷ÒªÕϰ­¡£
¡¡¡¡ÎªÁËÈ·¶¨p53ʧ»î¹ØÓÚ¸Éϸ°ûÑù°©Ï¸°û·ºÆðµÄÓ°Ï죬SpikeºÍMizuno¶ÔÈéÏÙ°©ºÍ·Î°©Öеļ¸°Ù¸ö»ùÒò±í´ïͼÆ×¾ÙÐÐÁËÑÏÃܵØÉ¸²é£¬Ñ°ÕÒ¸Éϸ°ûÑùµÄ±ê¼Ç£¬¼ì²âËüÃÇÓëp53״̬µÄÁªÏµ¡£¡°ÎÒÃÇ·¢Ã÷p53Í»±ä»òʧ»îµÄÖ×ÁöÓë¸Éϸ°ûÔÚ»ùÒò±í´ïģʽÉÏÓÐ×ÅÇ×½üµÄÁªÏµ£¬¡±Spike˵£º¡°p53ËðʧʹµÃϸ°ûսʤÁËéæÃüºÍÔöÖ³Õϰ­´Ó¶ø±¬·¢ÁËÖÂÁöÐÔ¡£¡±WahlÏ£ÍûÔÚ½ÓÏÂÀ´µÄÑо¿ÖÐÄܹ»¸üÉîÈëµØÏàʶÖ×Áöϸ°ûÏò¸Éϸ°ûÑù״̬ת»¯µÄÀú³Ì¡£¡°Ö×ÁöÔ½¿¿½ü¸Éϸ°û״̬¾ÍÔ½¾ßÓÐÇÖÏ®ÐÔ£¬¿ÉÊÇËüÃÇÈÔÈ»¾ßÓзֽâΪ½ÏµÍÇÖÏ®ÐÔµÄϸ°ûÀàÐ͵ÄÄÜÁ¦£¬¡±Wahlshuo £º¡°ÈôÊÇÎÒÃÇÄܹ»Ê¹ÓÃÕâһDZÁ¦£¬ÎÒÃÇ»òÐí¾ÍÄÜÆÈʹÕâЩϸ°ûÖØÐ·ֽ⣬´Ó¶ø½µµÍËüÃǵÄΣÏÕÐÔ¡£ ¡±

¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿Åú×¢¸Éϸ°ûÑù°©Ï¸°û²»ÊÇÖ×ÁöÒòÓÉ£¬¶øÊÇЧ¹û£¬p53ÔÚÖ×Áö±¬·¢ºóÆÚ¿ÉÒÔ×èÖ¹Ö×Áöϸ°ûÏò¸Éϸ°ûÑù״̬ת»¯£¬´Ó¶ø½µµÍÆäÇÖÏ®ÐÔ¡£

¡¾Ô­ÎÄժ¼¡¿PNAS  DOI: 10.1073/pnas.1017001108
Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures
Hideaki Mizuno, Benjamin T. Spikec, Geoffrey M. Wahlc, and Arnold J. Levine
Breast cancer comprises a heterogeneous set of diseases distinguishable from one another by pathologic presentation and molecular signatures. However, each breast cancer subtype is also heterogeneous. Some of the heterogeneity may be attributable to genetic instability, but recent data emphasize that developmental plasticity may also contribute. The p53 tumor suppressor could constitute a nodal control point underlying both sources of heterogeneity because it is frequently inactivated during malignant progression and has recently been shown to function as a potent barrier preventing fully differentiated cells from reverting to pluripotent stem cells after expression of appropriate oncogenes. Using archival microarray datasets, we tested the hypothesis that a p53 mutation could allow cells within a tumor to acquire a stem cell-like state by looking for coordinate expression of stem cell identity genes. We show that breast and lung cancers with p53 mutations do exhibit stem cell-like transcriptional patterns. Such tumors were also depleted for differentiation genes regulated by the polycomb repressor complex 2. These data are consistent with a model in which loss of p53 function enables acquisition of stem cell properties, which are positively selected during tumor progression.

6. ¹ûÓ¬ÉúÖ³¸Éϸ°û·Ö½âлúÖÆ
¡¾ÕªÒª¡¿
¡¡¡¡¸Éϸ°ûÊÇÉúÎïÌåÄÚÉÙÊý´¦ÓÚÎÞÏÞÔöÖ³£¬Î´·Ö½â»òµÍ·Ö½â״̬²¢¾ßÓжàÖÖ»òÒ»ÖÖ·Ö½âDZÄܵÄϸ°ûȺ¡£¸Éϸ°ûµÄÆæÒìÄÜÁ¦ÌåÏÖÔÚÓÚ£¬Í¨¹ý²î³Ø³ÆÆÆË鱬·¢¾ßÓвî±ðÔËÆøµÄÁ½¸ö×Ó´úϸ°û£¬Ò»¸öÊÇͨ¹ý×ÔÎÒ¸üУ¬ÖØÐ±¬·¢Î¬³Ö¸Éϸ°ûÌØÕ÷µÄиÉϸ°û£»¶øÁíÒ»¸ö×Óϸ°ûÔò²½Èë·Ö½â³ÌÐò£¬½ø¶øÐγÉеÄ×éÖ¯£¬»òÌæ»»ÉúÎïÌåÖÐËðÉË»òɥʧµÄ×éÖ¯ºÍÆ÷¹ÙÒÔά³ÖÉúÔËÆø¶¯µÄÑÓÐø¡£¶øÉúÖ³¸Éϸ°ûÔõÑùά³ÖÆäδ·Ö½â״̬ÊÇÕâÒ»ÁìÓòµÄÒ»Ïî½¹µã¿ÎÌ⡣֮ǰµÄÑо¿ÏÔʾ£¬¹ÇÐγÉÂѰף¨BMP£©¹ØÓÚά³Ö¹ûÓ¬ÉúÖ³¸Éϸ°ûµÄδ·Ö½â״̬¾ßÓÐÖ÷ÒªµÄÒâÒ壬ÕâÖÖ×÷ÓÃÒò×Ó¿ÉÒÔ̫ͨ¹ý»¯Òò×ÓBam£¬ÒÖÖÆÉúÖ³¸Éϸ°ûµÄ·Ö½â£¬¿ÉÊÇÕâÒ»ÏêϸµÄÀú³Ì£¬ÖÁ½ñ¿ÆÑ§¼ÒÃÇ»¹²»ÊǺÜÇåÎú¡£
¡¡¡¡À´×ÔÖпÆÔº¶¯ÎïÑо¿Ëù£¬Ç廪´óѧÉú¿ÆÔºµÄÑо¿Ö°Ô±·¢Ã÷Á˹ûÓ¬ÉúÖ³¸Éϸ°û·Ö½âµÄÒ»ÖÖлúÖÆ£¬²¢ÇÒÕâÒ»»úÖÆÒ²¿ÉÒÔÑÓÉìµ½°ßÂíÓãºÍÈËÀàϸ°û£¬Õâ¹ØÓÚÆÊÎöÉúÖ³¸Éϸ°û·Ö½â»úÖÆ¾ßÓÐÖ÷ÒªµÄÒâÒå¡£ÕâÒ»Ñо¿Ð§¹ûÐû²¼ÔÚÉÏÖܵÄCellÔÓÖ¾ÉÏ¡£ÔÚÕâÆªÎÄÕÂÖУ¬Ñо¿Ö°Ô±·¢Ã÷Ò»ÖÖË¿°±Ëá/ËÕ°±Ëἤø£ºFused (Fu)Äܵ÷¿ØHedgehog£¬²¢ÓëSmurfÐγɸ´ºÏÎͨ¹ýBMPÓ¦´ðϵͳʹÓùûÓ¬ÉúÖ³¸Éϸ°ûµÄÔËÆø£¬²¢ÇÒÑо¿Ö°Ô±ÔÚ°ßÂíÓ㣬ÒÔ¼°ÈËÀàϸ°ûÖÐÒ²·¢Ã÷ÁËÏàËÆµÄ×÷Óã¬Õâ˵Ã÷ÕâһлúÖÆ¿ÉÄܾßÓÐÆÕ±éµÄÊØ¾ÉÐÔ¡£È¥Äê³Â´ó»ªÑо¿×黹·¢Ã÷ÁË·ºËؽ鵼µÄϸ°ûÖÜÆÚÂѰ×ÔÚµ÷¿Ø¸Éϸ°ûÔËÆø·½ÃæµÄÖ÷Òª×÷Óã¬ËûÃÇÒÔ¹ûÓ¬ÉúÖ³¸Éϸ°ûΪÑо¿¹¤¾ß£¬·¢Ã÷·ºËØ»¯Àú³ÌÏà¹ØµÄÒ»ÖÖÖ÷ÒªµÄ»ùÒòeffete¡ª¡ª±àÂëÒ»ÖÖ·ºËؽӺÏøE2£¨Ubiquitin-conjugating Enzyme£©£¬ÔÚµ÷¿Ø¹ûÓ¬Âѳ²ÉúÖ³¸Éϸ°ûµÄÔËÆø¾öÒéÖÐʩչÖ÷Òª×÷Óá£
¡¡¡¡½øÒ»²½ÔËÓÃÒÅ´«Ñ§¡¢Éú»¯¼°·Ö×ÓÉúÎïѧµÈ¶àÖÖÊÖ¶ÎÑо¿·¢Ã÷£¬EffÂѰ×ͨ¹ýÍŽáÓÐË¿ÆÆËéºóÆÚÔö½øÒò×ÓAPC£¨Ò»ÖÖ¶àÑÇ»ùµÄ·ºËØÅþÁ¬Ã¸E3£©¸´ºÏÌåÖеÄdAPC2£¬½éµ¼Ï¸°ûÖÜÆÚÂѰסª¡ªCyclin AµÄ·ºËØ»¯£¬´Ó¶øÍ¨¹ýµ÷¿ØCyclin AÂѰ×ˮƽµÄת±äÀ´Ó°ÏìÉúÖ³¸Éϸ°ûµÄÔËÆø¡£Õ⽫·ºËØ»¯ÐźÅͨ·µ÷¿ØÓë¸Éϸ°ûµÄÔËÆø¾öÒéÁªÏµÆðÀ´£¬Í¬Ê±Ò²Åú×¢Îúϸ°ûÖÜÆÚµ÷¿ØÒò×ÓÖ±½Ó¿ØÖƸÉϸ°ûµÄά³ÖÓë·Ö½â¡£·ºËØ»¯»úÀíºÍϸ°ûÖÜÆÚµ÷¿Ø»úÖÆ´Ó½Íĸµ½¸ßµÈ²¸È鶯Îï¸ß¶ÈÊØ¾É£¬ËµÃ÷²¸È鶯ÎïÖпÉÄܱ£´æÏàËÆµÄµ÷¿Ø»úÖÆ¿ØÖƸÉϸ°ûµÄÔËÆø¡£

¡¾µãÆÀ¡¿
¡¡¡¡¹ØÓÚ¸Éϸ°ûÔöÖ³Óë·Ö½âµ÷¿Ø»úÖÆµÄÊìϤÓÖǰ½øÁËÒ»²½¡£

¡¾Ô­ÎÄժ¼¡¿Cell  doi:10.1016/j.cell.2010.11.022
The Fused/Smurf Complex Controls the Fate of Drosophila Germline Stem Cells by Generating a Gradient BMP Response
Laixin Xia, Shunji Jia, Shoujun Huang, et al.
Highlights
CB differentiation involves antagonism of BMP signaling through regulation of Tkv Fu regulates CB differentiation by antagonizing BMP signal via interaction with Tkv Fu acts in concert with Smurf to terminate BMP signal by ubiquitinating Tkv in CBs Fu has a conserved role in antagonizing BMP/TGF¦Â signals from fly to vertebrate.
Summary
In the Drosophila ovary, germline stem cells (GSCs) are maintained primarily by bone morphogenetic protein (BMP) ligands produced by the stromal cells of the niche. This signaling represses GSC differentiation by blocking the transcription of the differentiation factor Bam. Remarkably, bam transcription begins only one cell diameter away from the GSC in the daughter cystoblasts (CBs). How this steep gradient of response to BMP signaling is formed has been unclear. Here, we show that Fused (Fu), a serine/threonine kinase that regulates Hedgehog, functions in concert with the E3 ligase Smurf to regulate ubiquitination and proteolysis of the BMP receptor Thickveins in CBs. This regulation generates a steep gradient of BMP activity between GSCs and CBs, allowing for bam expression on CBs and concomitant differentiation. We observed similar roles for Fu during embryonic development in zebrafish and in human cell culture, implying broad conservation of this mechanism.


 

ÍøÕ¾µØÍ¼