Ò»¾º¼¼

English Ò»¾º¼¼¼¯ÍÅÆóÒµÓÊÏä

ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨ËÄÊ®Áù£©

2011Äê-05ÔÂ-08ÈÕ ÈªÔ´£ºmebo

£¨5.2-5.8/2011£©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úР 


        Ö÷ÒªÄÚÈÝ£º¶ËÁ£Ã¸ÔÚÖ×ÁöÉú³¤ÖÐ×÷ÓõÄз¢Ã÷ £»·¢Ã÷ÏßÁ£ÌåµÄпØÖÆ»úÖÆ £»Í»±ä×éÖ¯¸Éϸ°ûÀàËÆÖ×Áö¸Éϸ°û £»ÈéÏÙ°©Ï¸°û¶Ô´Æ¼¤ËØÐźŵĿìËÙÆÕ±é¶ø¶ÌÔݵÄת¼·´Ó¦ £»ÎÞ¿¹Ô­´Ì¼¤¼¤»îÇÄÈ»µÄTϸ°û¡£

1. ¶ËÁ£Ã¸ÔÚÖ×ÁöÉú³¤ÖÐ×÷ÓõÄз¢Ã÷
¡¾¶¯Ì¬¡¿
ÃÀ¹úUT Southwestern Medical CenterµÄ¿ÆÑ§¼Ò·¢Ã÷Á˶ËÁ£Ã¸ÔÚÌåÄڵIJî±ð×÷ÓÃģʽ¡£¶ËÁ£Ã¸ÔõÑùÔÚÌåÄÚÆð×÷ÓõÄÌØ¶¨ÐÅÏ¢¹ØÓÚÃ÷È·ÈËÌåÖ×Áöϸ°ûÀï¶ËÁ£µÄ¶¯Á¦Ñ§ÊDZØÐèµÄ¡£¸ÃÑо¿µÄЧ¹ûÌáÐÑ£¬ÔÚ×ÔÎÒÆ½ºâµÄά³Ö¶ËÁ£³¤¶ÈµÄÌõ¼þÏ£¬ÔÚÿ´Îϸ°ûÆÆËéʱÔÚÿ¸ö¶ËÁ£ÉÏÖ»ÓÐÒ»¸ö·Ö×ӵĶËÁ£Ã¸Æð×÷ÓÃ˳ÐòÔÚÿ¸ö×îºó¼ÓÉÏԼĪ60¸öºËÜÕËá¡£Ïà·´£¬µ±¶ËÁ£ÑÓÉìʱ£¨·ÇƽºâÌõ¼þ£©ÔÚÿ¸ö¶ËÁ£ÉÏÓжà¸ö·Ö×ӵĶËÁ£Ã¸Æð×÷Ó᣺ã¾ÃÓöËÁ£Ã¸ÒÖÖÆ¼ÁImetelstatÖÎÁÆ·´×ªºóµÄÍ·¼¸ÖÜʱ¼äÀCajalÌ廹²»¿É½«¶ËÁ£Ã¸RNAÔËË͵½¶ËÁ££¬ÕâʱÆÚ¶ËÁ£Ã¸Çý¶¯µÄÑÓÉϾÙÐеĽÏÁ¿ÉÙ¡£ÕâһЧ¹ûÕ¹ÏÖCajalÌå¶Ô¶ËÁ£Ã¸µÄ´¦Öóͷ£¿ÉÄÜÓ°Ïì¶ËÁ£Ã¸µÄÒ»Á¬ºÏ³ÉÄÜÁ¦¡£¹ý±í´ïµÄ¶ËÁ£Ã¸Ò²±È×ÔÈ»±í´ïµÄ¶ËÁ£Ã¸´¦Öóͷ£ÄÜÁ¦²î¡£ÕâЩ·¢Ã÷ÏÔʾÁËÌåÄÚ¶ËÁ£Ã¸½ÓÄɵÄÁ½ÖÖ²î±ðµÄÖ÷ÒªÑÓÉìģʽ¡£

¡¾µãÆÀ¡¿
¡¡¸ÃÑо¿·¢Ã÷ÔÚ²î±ðÌõ¼þ϶ËÁ£Ã¸Óòî±ðµÄģʽά³ÖºÍÑÓÉì¶ËÁ£³¤¶È¡£½øÒ»²½ÆÊÎöÕâЩģʽ¼°ÆäÉæ¼°µÄÖ÷ÒªÉúÎï°Ðµã£¬¹ØÓÚ¸üºÃµÄÃ÷È·Ö×Áöϸ°ûµÄÉúÔËÆø¶¯ÒÔ¼°Ñ°ÕÒÏìÓ¦µÄ¶Ô²ßÓÐÖ÷ÒªÒâÒå¡£

¡¾²Î¿¼ÂÛÎÄ¡¿Molecular Cell, 2011; 42 (3): 297-307 DOI:10.1016/j.molcel.2011.03.020
Processive and Distributive Extension of Human Telomeres by Telomerase under Homeostatic and Nonequilibrium Conditions
Yong Zhao, Eladio Abreu, Jinyong Kim, et al.
Specific information about how telomerase acts in vivo is necessary for understanding telomere dynamics in human tumor cells. Our results imply that, under homeostatic telomere length-maintenance conditions, only one molecule of telomerase acts at each telomere during every cell division and processively adds 60 nt to each end. In contrast, multiple molecules of telomerase act at each telomere when telomeres are elongating (nonequilibrium conditions). Telomerase extension is less processive during the first few weeks following the reversal of long-term treatment with the telomerase inhibitor Imetelstat (GRN163L), a time when Cajal bodies fail to deliver telomerase RNA to telomeres. This result implies that processing of telomerase by Cajal bodies may affect its processivity. Overexpressed telomerase is also less processive than the endogenously expressed telomerase. These findings reveal two major distinct extension modes adopted by telomerase in vivo.

2. ·¢Ã÷ÏßÁ£ÌåµÄпØÖÆ»úÖÆ
¡¾¶¯Ì¬¡¿  
¡¡¡¡ÏßÁ£ÌåDNA»ùÒò±í´ïµÄ׼ȷ¿ØÖƹØÓÚµ÷Àí²¸È鶯ÎïµÄÑõ»¯Á×ËữÄÜÁ¦ÖÁ¹ØÖ÷Òª¡£ÔÚ´ËÀú³ÌÖÐMTERFÂѰ׼Ò×åÆðÖ÷Òª×÷Óã¬Æä¼Ò×å³ÉÔ±Éæ¼°ÁËת¼ÆðʼºÍλµãרһÐÔת¼ÖÕÖ¹µÄµ÷Àí¡£ÈðµäºÍµÂ¹ú¿ÆÑ§¼ÒµÄÒ»ÏîÐÂÑо¿Ö¤ÊµÆä³ÉÔ±Ö®Ò»£¬MTERF4£¬Ö±½Ó¿ØÖÆÏßÁ£ÌåºËÌÇÌåµÄÉúÔ´ºÏ³ÉºÍ·­Òë¡£MTERF4°´Ò»¶¨±ÈÀýÓëºËÌÇÌåRNA¼×»ù×ªÒÆÃ¸NSUN4Ðγɸ´ºÏÎﲢΪ´óºËÌÇÌåÑÇ»ùÕÐļNSUN4Ëù±ØÐ衣ȱÉÙMTERF4µ¼ÖºËÌÇÌå×é×°Õϰ­ºÍÂѰ׷­ÒëµÄ¼±¾çïÔÌ­¡£Òò´Ë£¬¸ÃÑо¿Ð§¹ûÅú×¢MTERF4ÊDz¸È鶯ÎïÏßÁ£ÌåÄÚÂѰ׷­ÒëµÄÖ÷Òªµ÷¿Ø×Ó¡£ÔÚȱÉÙMTERF4µÄÀÏÊóÖÐûÓÐÐγÉÓй¦Ð§µÄºËÌÇÌ壬ÎÞ·¨·­ÒëÐÂÂѰ×£¬Ó°ÏìÏßÁ£ÌåÕý³£¹¦Ð§£¬Ê¹ÄÜÁ¿Éú²úïÔÌ­¡£ÔÚÊýÖÖÒÅ´«²¡ÒÔ¼°Õý³£ÐàÂõºÍÄêËêÏà¹ØÐÔ¼²²¡Öж¼Ç£Éæµ½ÏßÁ£Ì幦Ч¼õÍË¡£


¡¾µãÆÀ¡¿
ÏßÁ£ÌåÊÇϸ°ûÉúÔËÆø¶¯µÄÖ÷µ¼£¬ÏßÁ£Ìå×Ô¼ºµÄ´úлÔ˶¯Òò¶ø¶Ôϸ°ûÖÁ¹ØÖ÷Òª¡£¹ØÓÚÏßÁ£Ìå´úлÔ˶¯µÄÈκÎÉîÈëÏàʶ¶¼»á¼«´óµØ×ÊÖúÎÒÃÇ·¢Ã÷ά³Öϸ°ûÕý³£ÉúÔËÆø¶¯µÄÌõ¼þ¡£

¡¾²Î¿¼ÂÛÎÄ¡¿Cell Metabolism, 2011; 13 (5): 527-539 DOI: 10.1016/j.cmet.2011.04.002
MTERF4 Regulates Translation by Targeting the Methyltransferase NSUN4 to the Mammalian Mitochondrial Ribosome
Yolanda C¨¢mara, Jorge Asin-Cayuela, Chan Bae Park, et al.
Precise control of mitochondrial DNA gene expression is critical for regulation of oxidative phosphorylation capacity in mammals. The MTERF protein family plays a key role in this process, and its members have been implicated in regulation of transcription initiation and site-specific transcription termination. We now demonstrate that a member of this family, MTERF4, directly controls mitochondrial ribosomal biogenesis and translation. MTERF4 forms a stoichiometric complex with the ribosomal RNA methyltransferase NSUN4 and is necessary for recruitment of this factor to the large ribosomal subunit. Loss of MTERF4 leads to defective ribosomal assembly and a drastic reduction in translation. Our results thus show that MTERF4 is an important regulator of translation in mammalian mitochondria.


3. Í»±ä×éÖ¯¸Éϸ°ûÀàËÆÖ×Áö¸Éϸ°û
¡¾¶¯Ì¬¡¿
¡¡¡¡ÉÏÆ¤¸Éϸ°û×ÔÎÒ¸üеÄͬʱά³Ö¶àÄÜÐÔ£¬ÒÑ֪ȱÉÙÂѰ׼¤Ã¸MAP3K4µÄ×ÌÑø²ã¸Éϸ°û£¨TSϸ°û£©Í¬Ê±Î¬³ÖÁ˸Éϸ°ûÌØÕ÷ºÍÉÏÆ¤-¼äÖʹý¶ÉÌ¬ÌØÕ÷¡£ÃÀ¹ú±±¿¨´óѧµÄÐÂÑо¿ÏÔʾMAP3K4¿ØÖÆÁË×éÂѰ×ÒÒõ £»ù×ªÒÆÃ¸CBPµÄÔ˶¯£¬¶øÎ¬³ÖÉÏÆ¤±íÐÍÐèÒªCBPÀ´ÒÒõ £»¯×éÂѰ×H2A ºÍ H2B¡£ MAP3K4/CBPµÄ»îÐÔͬʱȱʧÒÖÖÆÁËÉÏÆ¤»ùÒòµÄ±í´ïµ¼ÖÂTS ϸ°ûÔÚά³ÖÆä×ÔÎÒ¸üкͶàÄÜÐÔµÄͬʱ¾ÙÐÐEMTÉÏÆ¤-¼äÖÊת»»¡£MAP3K4ȱÏݵÄTS ϸ°ûµÄ±í´ïÆ×Ã÷È·ÁËÒ»ÖÖ H2B ÒÒõ £»¯µ÷ÀíµÄ»ùÒò±êÇ©£¬ÓëÈËÌåÈéÏÙ°©Ï¸°ûµÄϸÃÜÖØµþ¡£×ܵĿ´À´£¬¸ÃÑо¿Ã÷È·ÁËÒ»ÖÖ±í¹ÛÒÅ´«¿ª¹ØÔÚTSϸ°ûÖÐά³ÖÆäÉÏÆ¤±íÐͲ¢ÇÒÕ¹ÏÖÁËǰËùδ֪µÄ¿ÉÄܶÔÈéÏÙ°©Æð×÷ÓõĻùÒò¡£Ö»¸Ä±äÁËÕý³£TS×éÖ¯¸Éϸ°ûµÄÒ»¸ö°±»ùËᣬÕâЩͻ±ä¸Éϸ°ûÔÚά³Ö×ÔÎÒ¸üеÄͬʱÌåÏÖ³öºÜÊÇÀàËÆÓÚÔ¤ÆÚÊÇÖ×Áö¸Éϸ°ûÌØÕ÷µÄ¸ß×ªÒÆÐԺ͸ßÇÖÏ®ÐÔ¡£

¡¾µãÆÀ¡¿
¡¡ Ö×Áö¸Éϸ°ûºÍÕý³£×éÖ¯¸Éϸ°û¹²ÓÃijЩ·Ö×ÓÐźŻúÖÆ£¬±í¹Ûµ÷¿Ø¾öÒé×Åϸ°ûÔËÆø¡£Õý³£×éÖ¯¸Éϸ°ûÄܹ»Í»Äð³ÉÖ×Áö¸Éϸ°û¶øÕë¶ÔÖ×Áö¸Éϸ°ûÕâЩ·Ö×ÓÐźŻúÖÆµÄ¸ÉÔ¤Ò²Ò»¶¨Ó°ÏìÕý³£×éÖ¯¸Éϸ°û¡£

¡¾²Î¿¼ÂÛÎÄCell Stem Cell, Volume 8, Issue 5, 525-537, DOI:10.1016/j.stem.2011.03.008
MAP3K4/CBP-Regulated H2B Acetylation Controls Epithelial-Mesenchymal Transition in Trophoblast Stem Cells
Amy N. Abell, Nicole Vincent Jordan, Weichun Huang, et al.
Epithelial stem cells self-renew while maintaining multipotency, but the dependence of stem cell properties on maintenance of the epithelial phenotype is unclear. We previously showed that trophoblast stem (TS) cells lacking the protein kinase MAP3K4 maintain properties of both stemness and epithelial-mesenchymal transition (EMT). Here, we show that MAP3K4 controls the activity of the histone acetyltransferase CBP, and that acetylation of histones H2A and H2B by CBP is required to maintain the epithelial phenotype. Combined loss of MAP3K4/CBP activity represses expression of epithelial genes and causes TS cells to undergo EMT while maintaining their self-renewal and multipotency properties. The expression profile of MAP3K4-deficient TS cells defines an H2B acetylation-regulated gene signature that closely overlaps with that of human breast cancer cells. Taken together, our data define an epigenetic switch that maintains the epithelial phenotype in TS cells and reveals previously unrecognized genes potentially contributing to breast cancer.


4. ÈéÏÙ°©Ï¸°û¶Ô´Æ¼¤ËØÐźŵĿìËÙÆÕ±é¶ø¶ÌÔݵÄת¼·´Ó¦
¡¾¶¯Ì¬¡¿  
ÃÀ¹úÎ÷ÄÏҽѧÖÐÐĵÄÐÂÑо¿ÓÃGRO-seqÒªÁì²â¶¨Á˴Ƽ¤ËØÐźŶÔÈéÏÙ°©Ï¸°ûת¼Æ×µÄÖ±½Ó×÷Óá£Í¨¹ýеÄÉúÎïÐÅϢѧҪÁìÆÊÎöËùµÃÊý¾ÝʹÎÒÃÇÄܹ»Ö±½Ó´ÓÖÐÅбð³öת¼Îï¡£·¢Ã÷´Æ¼¤ËØÐźÅÒÔ¿ìËÙ¡¢Ç¿Á¦ºÍ³öºõÔ¤ÁϵĶÌÔÝ·½·¨Ö±½Óµ÷ÀíºÜ´ó²¿·Öת¼Æ×¡£³ýÁ˱àÂëÂѰ׵ĻùÒò£¬´Æ¼¤ËØ»¹µ÷ÀíËùÓÐÈýÖÖRNA¾ÛºÏøµÄÂþÑܺÍ×÷ÓÃÒÔ¼°ÏÕЩÿһÖÖÆù½ñ·¢Ã÷µÄ·Ç±àÂëRNA¡£¸ÃÑо¿Ð§¹û×îÖÜÈ«µÄ²â¶¨ÁËÆù½ñÖ÷ÒªµÄºÍÖ±½ÓµÄ´Æ¼¤ËØ×÷Óã¬Ìṩ×ÊÔ´×ÊÖúÃ÷È·ÆäËûϵͳÖпìËÙÐźÅÒÀÀµµÄת¼Ô˶¯¡£´Æ¼¤ËØÊÇÈéÏÙ°©Éú³¤µÄÆðʼÇý¶¯Á¦¡£


¡¾µãÆÀ¡¿
´Æ¼¤ËضÔת¼Æ×µÄ¿ìËÙÆÕ±éµÄ×÷ÓÃÅú×¢Îú·Ç»ùÒòÒòËØ¼°±í¹Ûµ÷¿Ø¶ÔÉúÔËÆø¶¯µÄÖØ´óÓ°Ïì¡£

¡¾²Î¿¼ÂÛÎÄ¡¿ Cell, 05 May 2011 DOI: 10.1016/j.cell.2011.03.042
A Rapid, Extensive, and Transient Transcriptional Response to Estrogen Signaling in Breast Cancer Cells
Nasun Hah, Charles G. Danko, Leighton Core, et al.
We report the immediate effects of estrogen signaling on the transcriptome of breast cancer cells using global run-on and sequencing (GRO-seq). The data were analyzed using a new bioinformatic approach that allowed us to identify transcripts directly from the GRO-seq data. We found that estrogen signaling directly regulates a strikingly large fraction of the transcriptome in a rapid, robust, and unexpectedly transient manner. In addition to protein-coding genes, estrogen regulates the distribution and activity of all three RNA polymerases and virtually every class of noncoding RNA that has been described to date. We also identified a large number of previously undetected estrogen-regulated intergenic transcripts, many of which are found proximal to estrogen receptor binding sites. Collectively, our results provide the most comprehensive measurement of the primary and immediate estrogen effects to date and a resource for understanding rapid signal-dependent transcription in other systems.


5. ÎÞ¿¹Ô­´Ì¼¤¼¤»îÇÄÈ»µÄTϸ°û
¡¾¶¯Ì¬¡¿
    µÚÒ»´ÎÓÐÖ±½ÓÖ¤¾ÝÅú×¢ÂѰ×Foxp1×Ô¶¯Î¬³ÖTϸ°ûµÄÇÄȻ״ֱ̬µ½Æä±»ÃâÒßϵͳµÄÆäËü²¿·Ö½ÐÐÑ¡£ÇóýFoxp1ÂѰ׵ÄÀÏÊóTϸ°û±»¼¤»îÐÐʹÆä¾¯½ä¹¦Ð§¡£×ªÂ¼Òò×ÓFoxp1Ö´ÐбØÐèµÄ×ÔÈ»Tϸ°ûÇÄȻ״̬µÄϸ°ûÄÚÔÚµ÷Àí¡£ÃÀ¹úWistarÑо¿Ëù±¨µÀÁËȱÉÙת¼Òò×ÓFoxp1µÄ³ÉÊìµÄ×ÔÈ»CD8+Tϸ°û»ñµÃÁËЧӦÆ÷±íÐͺ͹¦Ð§²¢ÇÒÔÚÌåÍâÖ±½ÓÏìÓ¦IL-7 ¶øÔöÖ³¡£Foxp1Þ׿¹Foxo1¶øÒÖÖÆIL-7R¦ÁµÄ±í´ï£¬¸ºÏòµ÷Àí¼¤Ã¸MEKºÍErKµÄÐźÅ¡£ÔÚÁܰÍϸ°û³äÔ£µÄÀÏÊóÖпìËÙɾ³ýFoxp1 ÓÕµ¼ÁË×ÔÈ»Tϸ°û»ñµÃЧӦÆ÷±íÐͲ¢ÔöÖ³¡£Foxp1ȱÏݵÄ×ÔÈ»CD8+Tϸ°ûÉõÖÁÄܹ»ÔÚȱ·¦Ö÷ÒªµÄIÀà×éÖ¯ÏàÈÝÐÔ¸´ºÏÎïµÄÁܰÍϸ°ûïÔÌ­ÐÔÀÏÊóÖÐÔöÖ³¡£¸ÃÑо¿Ö¤ÊµÎúÁܰÍϸ°ûÇÄÈ»ÊÇͨ¹ý°üÀ¨×ªÂ¼µ÷ÀíÔÚÄÚµÄ×Ô¶¯Î¬³Ö»úÖÆ»ñµÃµÄ¡£

¡¾µãÆÀ¡¿
¸ÃÑо¿Ö¤ÊµÃâÒßϸ°ûµÄ´ýÃü״̬²¢²»ÊǼòÆÓµÄ±»¶¯Ä¬ÈϹ¦Ð§£¬¶øÊÇÒ»¸öÉæ¼°µ½×ªÂ¼Òò×ÓµÄ×Ô¶¯¿ØÖÆÀú³Ì¡£ÕâÒ»·¢Ã÷Ҳ˵Ã÷ÎúÉúÃü»úÖÆµÄϸÃܺÍÓÐÖÈÐò£¬µ«Ò²ÎªÏà¹Ø¸ÉÔ¤ÌṩÁË¿ÉÄÜ¡£


¡¾²Î¿¼ÂÛÎÄ¡¿Nature Immunology, 2011; DOI: 10.1038/ni.2034
Transcription factor Foxp1 exerts essential cell-intrinsic regulation of the quiescence of naive T cells
Xiaoming Feng, Haikun Wang, Hiroshi Takata, et al.
The molecular mechanisms that underlie T cell quiescence are poorly understood. Here we report that mature naive CD8+ T cells lacking the transcription factor Foxp1 gained effector phenotype and function and proliferated directly in response to interleukin 7 (IL-7) in vitro. Foxp1 repressed expression of the IL-7 receptor ¦Á-chain (IL-7R¦Á) by antagonizing Foxo1 and negatively regulated signaling by the kinases MEK and Erk. Acute deletion of Foxp1 induced naive T cells to gain an effector phenotype and proliferate in lympho-replete mice. Foxp1-deficient naive CD8+ T cells proliferated even in lymphopenic mice deficient in major histocompatibility complex class I. Our results demonstrate that Foxp1 exerts essential cell-intrinsic regulation of naive T cell quiescence, providing direct evidence that lymphocyte quiescence is achieved through actively maintained mechanisms that include transcriptional regulation.
 

ÍøÕ¾µØÍ¼