ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨ÈýÊ®Æß£©
£¨12.20-12.31/2010£©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úÐÂ
---2010ÔÙÉú¿ÆÑ§Äê¶ÈÏ£Íû
¡¡¡¡±¾´Î¶¯Ì¬°üÀ¨ÒÔÏÂÄÚÈÝ£ºÄÍÁ¦Ä¥Á¶Ê¹Ðļ¡Ï¸°ûÔöÖ³µÄ»úÀí£»°©Ö¢¸Éϸ°û»ùÒò±í´ï¸ß°©Ö¢ÖÎÁÆÐ§¹û²î£»ÎÞÐè±ê¼ÇʵʱÊÓ²ì»î×éÖ¯ÖзÖ×ÓÔ˶¯£»¹ûÓ¬¼¤»îÉúֳϸ°ûÒÅ´«»ùÒòÀ´±¬·¢Ö×Áö£»°©Ï¸°û×ÔÎÒɱ¾øÓë×ÔÎÒ±£»¤µÄÐźŷÖ×Ó£»Ï¸Ð¡RNA±í´ïģʽµÄÕûÌåͼÆ×Çø·Ö¸Éϸ°ûÖÖ±ð¡£ÒÔ¼°2010¸÷ÆÚÖзºÆð¹ýµÄ½ÏÁ¿Í»³öµÄ¼¸ÏîÔÙÉú¿ÆÑ§Ï£ÍûµÄС½á¡£
1. ÄÍÁ¦Ä¥Á¶Ê¹Ðļ¡Ï¸°ûÔöÖ³µÄ»úÀí
¡¾ÕªÒª¡¿
ÈËÃǶ¼ÖªµÀÄ¥Á¶ÉíÌå¿ÉÒÔÔö½øÐ³´úл£¬ÓÐÒæÓÚÐÄѪ¹Ü¿µ½¡£¬µ«´Ëǰ¿ÆÑ§¼Ò¶ÔÔ˶¯ÊÂʵÔõÑùÓ°ÏìÐÄÔàÈ´ËùÖªÉõÉÙ¡£ÃÀ¹ú¹þ·ð´óѧҽѧԺµÄÑо¿Ö°Ô±ÈÕǰ±¨¸æËµ£¬ËûÃÇÊ״δӷÖ×Óˮƽ·¢Ã÷Ô˶¯ÓÐÒæÐÄÔ࿵½¡µÄ»úÀí£¬ÕâÒ»·¢Ã÷½«ÓÐÖúÓÚ¿ª·¢³öÖÎÁÆÐÄѪ¹Ü¼²²¡µÄÐÂÁÆ·¨¡£Ñо¿Ö°Ô±Í¨¹ýСÊóʵÑé·¢Ã÷£¬¾³£Ô˶¯¿ÉÒÔʹСÊóÌåÄÚµÄC/EBP¦Âת¼Òò×ÓˮƽÏÔÖøÏ½µ£¬ÆäЧ¹û»áÔö½øÐ¡ÊóÐÄÔ༡Èâϸ°ûÔöÖ³£¬ÓÐÒæÓÚÐÄÔàÉú³¤¡£±ðµÄ£¬Ñо¿Ö°Ô±»¹·¢Ã÷£¬ÌåÄÚC/EBP¦Âˮƽ½ÏµÍµÄСÊó¶ÔÐÄÁ¦Ë¥½ß¾ßÓжԿ¹ÄÜÁ¦¡£Ñо¿Ö°Ô±ÌåÏÖ£¬ÕâÏîÑо¿¶ÔÐÄÔ༡ÈâÔÙÉúµÄDZÁ¦ÓÐÁËÉîÈëÃ÷È·¡£¼ÓÈëÑо¿µÄ¹þ·ð´óѧҽѧԺ½ÌÊÚ°²¶«ÄᡤÂÞÉ´ÄκϣÌåÏÖ£¬Í¨¹ýÕâÏîÑо¿¿ÉÒÔ¿ª·¢³öÕë¶ÔÄÇЩÎÞ·¨Ô˶¯µÄÐÄÔಡ»¼ÕßµÄÁÆ·¨¡£ÕâÏîÑо¿Ð§¹û½ÒÏþÔÚÐÂÒ»ÆÚÃÀ¹ú¡¶Ï¸°û¡·ÔÓÖ¾ÉÏ¡££¨ÈªÔ´£ºÐ»ªÉ磩
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿Ëù·¢Ã÷µÄÐļ¡ÔöÖ³»úÀíͬÑùÓÐÖúÓÚÃ÷È··ÇÒ©Îï·½·¨ÊµÏÖ×éÖ¯ÔÙÉúµÄ»úÖÆ²¢Ôö½ø´ËÀà×ÔÈ»ÔÙÉúÒªÁìµÄÍÆ¹ã¡£
¡¾ÔÎÄժ¼¡¿Cell, Volume 143, Issue 7, 1072-1083, 23 December 2010
C/EBP¦Â Controls Exercise-Induced Cardiac Growth and Protects against Pathological Cardiac Remodeling
Pontus Boström, Nina Mann, Jun Wu, et al.
The heart has the ability to grow in size in response to exercise, but little is known about the transcriptional mechanisms underlying physiological hypertrophy. Adult cardiomyocytes have also recently been proven to hold the potential for proliferation, a process that could be of great importance for regenerative medicine. Using a unique RT-PCR-based screen against all transcriptional components, we showed that C/EBP¦Â was downregulated with exercise, whereas the expression of CITED4 was increased. Reduction of C/EBP¦Â in vitro and in vivo resulted in a phenocopy of endurance exercise with cardiomyocyte hypertrophy and proliferation. This proliferation was mediated, at least in part, by the increased CITED4. Importantly, mice with reduced cardiac C/EBP¦Â levels displayed substantial resistance to cardiac failure upon pressure overload. These data indicate that C/EBP¦Â represses cardiomyocyte growth and proliferation in the adult mammalian heart and that reduction in C/EBP¦Â is a central signal in physiologic hypertrophy and proliferation.
2. °©Ö¢¸Éϸ°û»ùÒò±í´ï¸ß°©Ö¢ÖÎÁÆÐ§¹û²î
¡¾ÕªÒª¡¿
¡¡¡¡¾ÝÃÀ¹úÎïÀíѧ¼Ò×éÖ¯Íø12ÔÂ22ÈÕ£¨±±¾©Ê±¼ä£©±¨µÀ£¬Ë¹Ì¹¸£´óѧÑо¿Ö°Ô±Í¨¹ý¶Ô°×Ѫ²¡¸Éϸ°ûµÄ»ùÒò±í´ï·½·¨Ñо¿·¢Ã÷£¬°©Ö¢¸Éϸ°û»ùÒò±í´ïˮƽ¸ü¸ßµÄ²¡È˱ȱí´ïˮƽµÍµÄ²¡ÈËÔ¤ºóЧ¹ûÒª²îÐí¶à£¬¸Ã·¢Ã÷Ê×´Îͨ¹ýÁÙ´²Êý¾Ý֤ʵÎú°©Ö¢¸Éϸ°û¿´·¨¡£Ò½ÁÆÖ°Ô±¿É¾Ý´ËÕ¹ÍûȺÌ岡È˵ÄÖÎÁÆÐ§¹û£¬²¢×ÊÖú¿ª·¢ÐµÄÁÙ´²ÁÆ·¨¡£Ñо¿½ÒÏþÔÚ12ÔÂ22Èյġ¶ÃÀ¹úҽѧ»áÔÓÖ¾¡·£¨JAMA£©ÉÏ¡£¼¸ÄêÌõ¼þ³öµÄ°©Ö¢¸Éϸ°û¿´·¨ÒÔΪ£¬Ä³Ð©°©Ö¢ÆðÔ´ÓÚһС´é×ÔÎÒ¸üÐÂÄÜÁ¦ºÜÇ¿µÄϸ°û£¬ÕâһС´éϸ°û¼´Êǰ©Ö¢¸Éϸ°û¡£ÕâЩ°©Ö¢¸Éϸ°ûÄÜÒ»Ö±Ôö²¹ÌìÉúÐµİ©Ö¢Ï¸°û£¬°©Ö¢Òª³¹µ×ÖÎÁÆ£¬±ØÐèɨ³ýÕâЩ¸Éϸ°û¡£°©Ö¢¸Éϸ°û¶Ô¿¹ÖÎÁÆÒѾÔÚһЩ¹Ì×´Ö×ÁöºÍѪ°©µÄ¶¯ÎïÄ£×ÓÖлñµÃÑéÖ¤£¬ËäÈ»Óдó×ÚʵÑéÊÒÖ¤¾ÝÖ§³Ö£¬µ«ÖÁ½ñ»¹È±·¦ÁÙ´²Ö¤¾Ý¡£ÂÛÎĺÏÖøÕß¡¢Ë¹Ì¹¸£°©Ö¢ÖÐÐÄÒ½Îñ²¿°¬Ê²¡¤°£ÀïɳµÂºÍͬÊÂÀÎĴÂí½ÜÌá½ñÄê9ÔÂÔøÔÚʵÑéÊÒСÊóÖУ¬¶Ô·Ç»ôÆæÉÁܰÍÁö°©Ö¢¸Éϸ°ûÍâò·¢Ã÷µÄÂѰ×ÖÊCD47Ñо¿·¢Ã÷£¬CD47Êǰ©Ö¢¸Éϸ°ûµÄ¡°±£»¤É¡¡±£¬ÓÐÁËËü£¬Ðí¶àÒ©Îï¶ÔÕâЩϸ°ûÎÞЧ¡£CD47ÔÚÆäËû¼¸ÖÖ°©Ö¢¸Éϸ°ûÖÐÒ²±£´æ¡£Âí½ÜÌáÒÔΪÕâЩ¶¯ÎïʵÑéÖз¢Ã÷µÄÖ¤¾ÝÔÚÈËÌåÖÐÒ²Ó¦¸Ã±£´æ¡£ËûÃÇÓÃÁ½ÖÖÄÜʶ±ð°×Ѫ²¡¸Éϸ°ûµÄÍâò±ê¼Ç£¬´Ó7¸ö°×Ѫ²¡»¼ÕßµÄÖ×ÁöÑù±¾ÖÐÊèÉ¢³öÕâЩ°×Ѫ²¡¸Éϸ°û£¬½«Ö×Áö¸Éϸ°ûºÍÆäËûÖ×Áöϸ°ûµÄ»ùÒò±í´ï·½·¨¾ÙÐÐÁ˱ÈÕÕ£¬Ð§¹ûÓÐ52%µÄ»ùÒò±í´ï²î±ð¡£°©Ö¢¸Éϸ°û»ùÒò±í´ï·½·¨ºÍÕý³£µÄѪҺ¸Éϸ°ûºÜÏàËÆ£¬²»µ«ÄÜ×ÔÎÒ¸üУ¬»¹ÄÜÏñÕý³£¸Éϸ°ûÔÚÐèҪʱ¼ä²ÅÆÆË顣ΪÁËÌÓ±ÜÄÇЩÕë¶ÔѸËÙÆÆËéϸ°ûµÄ¹Å°åÖÎÁÆÒªÁ죬Ëü»áÑ¡ÔñÉÙÁ¿ÆÆË飬DZÔÚ×Å£¬ÆÚ´ýʱ»ú¡°ËÀ»Ò¸´È»¡±¡£
¡¡¡¡Ñо¿Ö°Ô±»¹¶ÔÀ´×Ô1000¶àλ¼±ÐÔ¹ÇËè°×Ѫ²¡²¡È˵Ä4×éÖ×ÁöÑù±¾¾ÙÐÐÁ˱ÈÕÕÑо¿£¬·¢Ã÷ÔÚ¡°°©Ö¢¸Éϸ°û»ùÒò¸ß±í´ï¡±ºÍ¡°ÖÎÁÆÐ§¹û²î¡±Ö®¼ä±£´æºÜÇ¿µÄÏà¹ØÐÔ¡£ÔÚÒ»×éµÂ¹úÑù±¾ÖУ¬¸ß±í´ï²¡ÈË3ÄêÄÚéæÃüµÄ¾ø¶ÔΣº¦¸ß´ï78%£¬¶øµÍ±í´ï²¡È˽öΪ57%¡£Í¬Ñù£¬ÎÞ²¡ÉúÑÄÂÊ¡¢Ä³¸öʱÆÚÔٶȶñ»¯¿ÉÄÜÐÔ¡¢¶Ô¿¹Ê×´ÎÖÎÁÆÍç¹ÌÐÔµÈÖ¸±êÒ²ÔÆÔÆ¡£ÂÛÎĵÚÒ»×÷Õß¡¢Ë¹Ì¹¸£´óѧ°©Ö¢ÏµÍ³ÉúÎïѧÖÐÐݲµÂ³¡¤¼òÍÐ˹ÌåÏÖ£¬°×Ѫ²¡¸Éϸ°ûµÄÐźÅԽǿ£¬²¡ÈËÊÙÃüÔ½¶Ì£¬²¡Çé¶ñ»¯µÃÔ½¿ì£¬ÖÎÁÆÐ§¹û¾Í¸ü²î¡£ÏÖÔÚ£¬Ñо¿Ð¡×éÕýÔÚ¼ÌÐøÑо¿Êý¾Ý£¬ÒÔ×îÖÕ´ÓÖÖÖÖÍŽΌÌåÁÆ·¨ÖÐÈ·¶¨ÄÄЩÁÆ·¨¶Ô°©Ö¢¸Éϸ°û¸ß±í´ï»ùÒòÐźŵIJ¡ÈË×îÓÐÓᣣ¨ÈªÔ´£º¿Æ¼¼ÈÕ±¨ Ðû²¼Ê±¼ä£º2010-12-23 10:20:47£©
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿·¢Ã÷Á˰×Ѫ²¡¸Éϸ°û»ùÒòµÄ¸ß±í´ïÓë¼±ÐÔÁ£Ï¸°û°×Ѫ²¡µÄÖÎÁÆÐ§¹û²îÖ®¼äÓÐ×ÔÁ¦µÄÏà¹ØÐÔ£¬¿ÉÊDz¢Ã»ÓÐ֤ʵ°©Ö¢¸Éϸ°ûÊÇÖ×Áö±¬·¢µÄÒòÓÉ¡£
¡¾ÔÎÄժ¼¡¿ JAMA. 2010;304(24):2706-2715. doi: 10.1001/jama.2010.1862
Association of a Leukemic Stem Cell Gene Expression Signature With Clinical Outcomes in Acute Myeloid Leukemia
Andrew J. Gentles, Sylvia K. Plevritis, Ravindra Majeti, Ash A. Alizadeh
Abstract
Context In many cancers, specific subpopulations of cells appear to be uniquely capable of initiating and maintaining tumors. The strongest support for this cancer stem cell model comes from transplantation assays in immunodeficient mice, which indicate that human acute myeloid leukemia (AML) is driven by self-renewing leukemic stem cells (LSCs). This model has significant implications for the development of novel therapies, but its clinical relevance has yet to be determined.
Objective To identify an LSC gene expression signature and test its association with clinical outcomes in AML.
Design, Setting, and Patients Retrospective study of global gene expression (microarray) profiles of LSC-enriched subpopulations from primary AML and normal patient samples, which were obtained at a US medical center between April 2005 and July 2007, and validation data sets of global transcriptional profiles of AML tumors from 4 independent cohorts (n = 1047).
Main Outcome Measures Identification of genes discriminating LSC-enriched populations from other subpopulations in AML tumors; and association of LSC-specific genes with overall, event-free, and relapse-free survival and with therapeutic response.
Results Expression levels of 52 genes distinguished LSC-enriched populations from other subpopulations in cell-sorted AML samples. An LSC score summarizing expression of these genes in bulk primary AML tumor samples was associated with clinical outcomes in the 4 independent patient cohorts. High LSC scores were associated with worse overall, event-free, and relapse-free survival among patients with either normal karyotypes or chromosomal abnormalities. For the largest cohort of patients with normal karyotypes (n = 163), the LSC score was significantly associated with overall survival as a continuous variable (hazard ratio [HR], 1.15; 95% confidence interval [CI], 1.08-1.22; log-likelihood P <.001). The absolute risk of death by 3 years was 57% (95% CI, 43%-67%) for the low LSC score group compared with 78% (95% CI, 66%-86%) for the high LSC score group (HR, 1.9 [95% CI, 1.3-2.7]; log-rank P = .002). In another cohort with available data on event-free survival for 70 patients with normal karyotypes, the risk of an event by 3 years was 48% (95% CI, 27%-63%) in the low LSC score group vs 81% (95% CI, 60%-91% ) in the high LSC score group (HR, 2.4 [95% CI, 1.3-4.5]; log-rank P = .006). In multivariate Cox regression including age, mutations in FLT3 and NPM1, and cytogenetic abnormalities, the HRs for LSC score in the 3 cohorts with data on all variables were 1.07 (95% CI, 1.01-1.13; P = .02), 1.10 (95% CI, 1.03-1.17; P = .005), and 1.17 (95% CI, 1.05-1.30; P = .005).
Conclusion High expression of an LSC gene signature is independently associated with adverse outcomes in patients with AML.
3. ÎÞÐè±ê¼ÇʵʱÊÓ²ì»î×éÖ¯ÖзÖ×ÓÔ˶¯
¡¾ÕªÒª¡¿
¡¡¡¡ÃÀ¹ú¹þ·ð´óѧ¿ÆÑ§¼Ò½«Êܼ¤ÀÂüÉ¢É䣨SRS£©ÏÔ΢¾µºÍºË´Å¹²Õñ³ÉÏñ£¨MRI£©ÊÖÒÕÍŽᣬÑÐÖÆ³öÒ»ÖÖ×îеÄÉúÎïҽѧ³ÉÏñ×°±¸£¬¼«´óÍØÕ¹ÁËSRSÏÔ΢¾µµÄÊÓÒ°¡£ÆäËÙÂÊÖ®¿ì¾«¶ÈÖ®¸ß£¬ÓÌÈç¡°ÊÓÆµ¡±£¬×ãÒÔʹ¿ÆÑ§¼ÒÖ±½ÓÑÛ¼û·Ö×ÓÔÚ»î×éÖ¯ÖеÄÔ˶¯¡£Ñо¿ÂÛÎĽÒÏþÔÚ×îÐÂÒ»ÆÚ¡¶¿ÆÑ§¡·ÔÓÖ¾ÉÏ¡£¡°´Ëǰ£¬SRSÏÔ΢¾µÃ¿·ÖÖÓÖ»ÄÜÅÄÉãÒ»·ù»Ã棬ÓÃÓÚ»îµÄ¶¯ÎïijÈËÌå¾ÍÌ«ÂýÁË¡£¡±¹þ·ð´óѧ»¯Ñ§Ó뻯ѧÉúÎïѧ½ÌÊÚлÏþÁÁ˵£¬¡°ÎÒÃÇ´ó´óÌá¸ßÁËÊÕÂÞÊý¾ÝµÄËÙÂÊ£¬Ê¹ÅÄÉãµÖ´ïÁËÊÓÆµËÙÂÊ¡£¡±Ñо¿Ð¡×黹ÓÃÕâÖÖÐÂÐÍSRSÏÔ΢¾µ×·×ÙÒ©ÎïÔÚÆ¤·ôϵÄÒÆ¶¯£¬ÆäÄÜÇåÎúÏÔʾ³öÒ©ÎïʵʱÎüÊÕÇéÐΡ£ÈçÓëÄÚ¾µ¼ì²éÊõÍŽᣬ»¹ÄÜÒ»²ãÒ»²ãÊÓ²ì×éÖ¯µÄÈýά½á¹¹¡£ÐÂÐÍSRSÏÔ΢¾µµÄÊÂÇéÔÀíÊÇ̽²âÔ×ÓÖ®¼ä»¯Ñ§¼üµÄÄÚÔÚÕ𾪣¬ÓÉÓÚÈÚºÏÁËMRIÊÖÒÕ£¬ÔÚ͸ÊÓÉî¶ÈÉϸüÊʺÏÅÄÉãÌåÄÚÆ÷¹ÙºÍÆäËû´óÄ¿µÄ£¬¼È¿ÉÆÕ±éÓÃÓÚÅÄÉãÆ÷¹ÙºÍ×éÖ¯½á¹¹µÄ¾²Ì¬Í¼Ïñ£¬Ò²ÄÜÔÚÑÇϸ°ûˮƽÒÔÁ÷¶¯»ÃæÊÓ²ìϸ°ûÖеÄÂѰ×ÖÊ¡¢Ö¬ÖʺÍË®¡£
¡¡¡¡Í¬¶àÖÖ³£ÓõÄÊÓ²ìÉúÎï·Ö×ÓµÄÊÖÒÕÏà±È£¬ÐÂÐÍSRSÏÔ΢¾µÓÅÊÆÏÔ×Å¡£ËüÄÜÊÕÂÞÆÊÎöÕÕÉäÉúÎïÑù±¾µÄ½ü30%¼¤¹â£¬±È¹Å°åSRSÏÔ΢¾µºá¿ç30±¶£»²¢ÇÒ²»ÐèÒª²åÈëÓ«¹â±ê¼Ç£¬×èÖ¹ÁËÂÌɫӫ¹â±ê¼ÇÂѰ×ÖÊÈÅÂÒÉúÎï·¾¶»òѹס½ÏСÉúÎï·Ö×ÓµÄÎÊÌâ¡£±ðµÄ£¬¹Å°åµÄºìÍâÏÔ΢¾µ¿Õ¼äÇø·ÖÂÊÌ«µÍ£¬²¢ÐèÒª¸øÑù±¾ÍÑË®£»×ÔÈ»µÄÀÂüÏÔ΢¾µÐèÒªºÜ¸ßµÄ¼¤¹âÄÜÁ¿£¬ÕûÌåºÄʱºÜ³¤£¬ÔÚ»îÑù±¾ÖеÄÓ¦ÓÃÊܵ½ÏÞÖÆ£»Ïà¹Ø·´Ë¹ÍпËÀÂüÉ¢ÉäÏÔ΢¾µÔÚÅÄÉã³ýÁËÖ¬ÖÊÒÔÍâµÄ´ó´ó¶¼·Ö×Óʱ±ÈÕնȲ»·ó£¬¶øÐÂÐÍSRSÏÔ΢¾µ¶¼ÄÜÍ»ÆÆÕâЩ¾ÖÏÞ¡£Ñо¿Ö°Ô±ÌåÏÖ£¬ÐÂÐÍSRSÏÔ΢¾µÔÚÒ½ÁÆÁìÓòµÄÓ¦ÓÃÔ¶¾°ÁÉÀ«¡£ºÃ±È£¬ÊÖÊõ֮ǰ±ØÐ轫Ñù±¾ËͼìÒÔÓÃÓÚ×éÖ¯ÆÊÎö£¬Õâ¸öÀú³ÌԼĪҪ»¨20·ÖÖÓ£¬Æä¼ä²¡ÈËÐèÒªµÈÔÚÊÖÊǫ̃ÉÏ£¬¶øÐÂÊÖÒÕ¿ÉÌṩʵʱɨÃè͸ÊÓ£¬ÓÐÖúÓÚ¼ÓËÙÍâ¿ÆÊÖÊõ£¬É¨³ýÖ×ÁöºÍÆäËûËðÉË¡£Ð»ÏþÁÁ˵£º¡°ÕâÒ»ÏîÄ¿×îÏÈÓÚ11Äêǰ£¬ºË´Å¹²ÕñÊÖÒÕ»¨ÁË30¶àÄê²ÅÓÃÓÚÁÙ´²£¬ÎÒÃÇÆÚÍûÕâÖÖSRSÏÔ΢¾µ¾¡ÔçÓ¦ÓÃÓÚÒ½Ôº¡£¡±ÈªÔ´£º¿Æ¼¼ÈÕ±¨ ³£Àö¾ý
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÏîÊÖÒÕ½«»á¼«´óµÄÔö½øÐÄÀíÉú»¯ÓÈÆäÊÇг´úлµÄÑо¿£¬ÈçÄܳÉÊìµØÔËÓÃÓÚÈËÌ壬¹ØÓÚÈËÌåÐÄÀíѧ¼°Ò½Ñ§Ñо¿½«ÓÐÖØ´óµÄ×ÊÖú¡£
¡¾ÔÎÄժ¼¡¿ Science Vol. 330 no. 6009 pp. 1368-1370 DOI: 10.1126/science.1197236
Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering
Brian G. Saar1,Christian W. Freudiger, Jay Reichman, et al.
Optical imaging in vivo with molecular specificity is important in biomedicine because of its high spatial resolution and sensitivity compared with magnetic resonance imaging. Stimulated Raman scattering (SRS) microscopy allows highly sensitive optical imaging based on vibrational spectroscopy without adding toxic or perturbative labels. However, SRS imaging in living animals and humans has not been feasible because light cannot be collected through thick tissues, and motion-blur arises from slow imaging based on backscattered light. In this work, we enable in vivo SRS imaging by substantially enhancing the collection of the backscattered signal and increasing the imaging speed by three orders of magnitude to video rate. This approach allows label-free in vivo imaging of water, lipid, and protein in skin and mapping of penetration pathways of topically applied drugs in mice and humans.
4. ¹ûÓ¬¼¤»îÉúֳϸ°ûÒÅ´«»ùÒòÀ´±¬·¢Ö×Áö
¡¾ÕªÒª¡¿
¡¡¡¡°ÍÈûÂÞÄÇµÄ ¿ÆÑ§¼Ò¿ËÈÕÔÚScienceÉϱ¨µÀËûÃÇ·¢Ã÷Á˹ûÓ¬Ó׳æÊ¹ÓÃÉúֳϸ°ûµÄÒÅ´«³ÌÐòÀ´´ßÉúÄÔ²¿Ö×Áö¡£¹Ø±ÕÉæ¼°µ½µÄÏà¹Ø»ùÒò¾Í»á¼á³Ö¿µ½¡µÄ´óÄÔ£¬ÕâÊÇÊ״η¢Ã÷¹Ø±ÕÕâЩÏà¹Ø»ùÒò¿ÉÒÔʹ¹ûÓ¬ÄÔ²¿Ö×ÁöÏûÊÅ¡£ËµÃ÷ÕâЩÉúֳϸ°ûµÄÒÅ´«»ùÒò¹ØÓÚ´ËÀàÖ×ÁöµÄ±¬·¢ÓÐÒªº¦×÷ÓᣴËǰʮÄê»ýÀÛµÄÊý¾ÝÏÔʾijЩÖ×ÁöÈçÐþÉ«ËØÁöºÍijЩÀà°©µÄ°©Ï¸°û»á¼¤»îÉúֳϸ°ûµÄÒÅ´«»ùÒò¡£
¡¾µãÆÀ¡¿
¡¡¡¡ÕâÏîÑо¿ËµÃ÷°©»ùÒò²¢·×Æç¶¨Êǰ©Ö¢±¬·¢µÄÔµ¹ÊÔÓÉ£¬ÉúÖ³»ùÒòµÄ¼¤»îÒ²¿ÉÄÜÒý·¢°©Ö¢¡£»ùÒò¼¤»îµÄÐÄÀíµ÷¿ØÊÇ·ñÕý³£ÊǺÜÖ÷ÒªµÄ¡£
¡¾ÔÎÄժ¼¡¿ Science, December 23, 2010 DOI: 10.1126/science.1195481
Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila.
Janic A, Mendizabal L, Llamazares S, Rossell D, Gonzalez C.
Model organisms such as the fruit fly Drosophila melanogaster can help to elucidate the molecular basis of complex diseases such as cancer. Mutations in the Drosophila gene lethal (3) malignant brain tumor cause malignant growth in the larval brain. Here we show that l(3)mbt tumors exhibited a soma-to-germline transformation through the ectopic expression of genes normally required for germline stemness, fitness, or longevity. Orthologs of some of these genes were also expressed in human somatic tumors. In addition, inactivation of any of the germline genes nanos, vasa, piwi, or aubergine suppressed l(3)mbt malignant growth. Our results demonstrate that germline traits are necessary for tumor growth in this Drosophila model and suggest that inactivation of germline genes might have tumor-suppressing effects in other species.
5. °©Ï¸°û×ÔÎÒɱ¾øÓë×ÔÎÒ±£»¤µÄÐźŷÖ×Ó
¡¾ÕªÒª¡¿
¡¡¡¡Ë¹Ì¹¸£´óѧҽѧԺµÄÑо¿Ö°Ô±·¢Ã÷Ðí¶à°©Ï¸°û×ÔÉí´øÓÐ×ÔÎÒɱ¾øµÄÖÖ×Ó--ϸ°ûÍâòһÖÖÃûΪ¸ÆÍøËصÄÂѰסªÄÜÕÙ¼¯Ñ»·ÏµÍ³µÄ¾ÞÊÉϸ°ûÀ´ÍÌʳÏû»¯ËûÃÇ¡£¶ø¾ø´ó´ó¶¼°©Ï¸°ûûÓб»É±¾øÊÇÓÉÓÚËûÃÇͬʱ±í´ïÁíÒ»ÖÖÐźÅÂѰ×CD47¶Ô¿¹¸ÆÍøËصÄ×÷Óá£
¡¾µãÆÀ¡¿
¡¡¡¡CD47Óë¸ÆÍøËØµÄ×÷Óü°¶þÕ߯½ºâµÄµ÷Àí»áÔö½ø°©Ö¢ÃâÒßÁÆ·¨µÄÉú³¤¡£
¡¾ÔÎÄժ¼¡¿ Sci Transl Med 22 December 2010: Vol. 2, Issue 63, p. 63ra94
Calreticulin Is the Dominant Pro-Phagocytic Signal on Multiple Human Cancers and Is Counterbalanced by CD47
M. P. Chao, S. Jaiswal, R. Weissman-Tsukamoto, et al.
Under normal physiological conditions, cellular homeostasis is partly regulated by a balance of pro- and anti-phagocytic signals. CD47, which prevents cancer cell phagocytosis by the innate immune system, is highly expressed on several human cancers including acute myeloid leukemia, non-Hodgkin¡¯s lymphoma, and bladder cancer. Blocking CD47 with a monoclonal antibody results in phagocytosis of cancer cells and leads to in vivo tumor elimination, yet normal cells remain mostly unaffected. Thus, we postulated that cancer cells must also display a potent pro-phagocytic signal. Here, we identified calreticulin as a pro-phagocytic signal that was highly expressed on the surface of several human cancers, but was minimally expressed on most normal cells. Increased CD47 expression correlated with high amounts of calreticulin on cancer cells and was necessary for protection from calreticulin-mediated phagocytosis. Blocking the interaction of target cell calreticulin with its receptor, low-density lipoprotein receptor¨Crelated protein, on phagocytic cells prevented anti-CD47 antibody¨Cmediated phagocytosis. Furthermore, increased calreticulin expression was an adverse prognostic factor in diverse tumors including neuroblastoma, bladder cancer, and non-Hodgkin¡¯s lymphoma. These findings identify calreticulin as the dominant pro-phagocytic signal on several human cancers, provide an explanation for the selective targeting of tumor cells by anti-CD47 antibody, and highlight the balance between pro- and anti-phagocytic signals in the immune evasion of cancer.
6. ϸСRNA±í´ïģʽµÄÕûÌåͼÆ×Çø·Ö¸Éϸ°ûÖÖ±ð
¡¾ÕªÒª¡¿
¡¡¡¡¸Éϸ°ûÉúÎïѧÔÚÈ«ÌìÏÂÒý·¢ÈËÃÇ¶ÔÆä¿ÉÒÔ×îÖÕÐÞ¸´ÉíÌ岿λµÄÖØ´óÆÚÍû¡£Ö»¹ÜÐí¶à¿ÆÑ§¼ÒÒÔΪÕâÊÇ¿ÉÐеģ¬¿ÉÊDZØÐèսʤÐí¶àÕϰ£¬°üÀ¨ÁîÈ˵£ÐĵÄÔÚÐÞ¸´Æ÷¹ÙʱÒý·¢°©Ö¢µÄDZÔÚΣº¦¡£¶ø¿ËÈÕ±¨µÀµÄ¼ÓÖÝ´óѧµÄÒ»Ïî¹ØÓÚ¶àÄÜÐÔ¸Éϸ°ûµÄϸСRNA±í´ïģʽµÄÑо¿»òÐí¶Ô´ËÓÐËù×ÊÖú¡£ËûÃÇÆÊÎöÐí¶àÖÖ¶àÄÜÐÔ¸Éϸ°ûµÄϸСRNA±í´ïģʽ£¬·¢Ã÷ËùÓеĶàÄÜÐÔ¸Éϸ°ûϸСRNA±í´ïģʽ²¢²»Ïàͬ£¬µ«²»ÊÇÒòϸ°ûȪԴ¶øÒ죬¶øÊǾßÓвî±ðµÄp53 ϵͳ״̬¡£Ï¸Ð¡RNA±í´ïģʽµÄÕûÌåͼÆ×Äܹ»¸æËßÄãÕâÊǺÎÖÖϸ°û£¬ºÎÖÖ°©Ö¢£¬ÊÇ·ñ¸Éϸ°ûµÈÐÅÏ¢¡£
¡¾µãÆÀ¡¿
¡¡¡¡Ï¸Ð¡RNA±í´ïģʽµÄÕûÌåͼÆ×Ñо¿Ò²Ðí»áÓÐÖúÓÚÑо¿ÈËÌåDZÄÜÔÙÉúϸ°ûµÄ¶¨Î»ºÍÊôÐÔ¡£
¡¾ÔÎÄժ¼¡¿ Cell Stem Cell, Volume 7, Issue 6, 671-681, 3 December 2010
MicroRNA Profiling Reveals Two Distinct p53-Related Human Pluripotent Stem Cell States
Pierre Neveu, Min Jeong Kye, Shuping Qi, et al.
Highlights
miRNA profiles distinguish two categories of human pluripotent stem cells
The p53 network status distinguishes pluripotent cells independently of their origin
p53-targeting miRNAs change the classification status of iPSCs
A 2D representation of miRNA profiles tracks differentiation and reprogramming
Summary
Reprogramming methodologies have provided multiple routes for achieving pluripotency. However, pluripotency is generally considered to be an almost singular state, with subtle differences described between induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs). We profiled miRNA expression levels across 49 human cell lines, including ESCs, iPSCs, differentiated cells, and cancer cell lines. We found that the resulting miRNA profiles divided the iPSCs and hESCs examined into two distinct categories irrespective of the cell line origin. The miRNAs that defined these two pluripotency categories also distinguished cancer cells from differentiated cells. Transcriptome analysis suggested that several gene sets related to p53 distinguished these categories, and overexpression of the p53-targeting miRNAs miR-92 and miR-141 in iPSCs was sufficient to change their classification status. Thus, our results suggest a subdivision of pluripotent stem cell states that is independent of their origin but related to p53 network status.
7. 2010ÔÙÉú¿ÆÑ§Äê¶ÈÏ£Íû
¡¡¡¡Æ¾Ö¤ÓëÈËÌåÔÙÉú»Ø¸´¿ÆÑ§µÄÏà¹ØË®Æ½£¬½ñÄê¶È¿¯µÇµÄÒÔ϶¯Ì¬×÷Ϊ2010ÔÙÉú¿ÆÑ§Äê¶ÈÏ£Íû£º
1.ÈËÌå¶àÐÑĿϸ°ûÌåÍⶨÏò·Ö½âÐγɳ¦×éÖ¯£»
2.ÀÏÊóʵÑéÅú×¢ÐÞ¸´¶ËÁ£¿ÉÒÔÄæ×ªÐàÂõ£»
3.òîó¢ÖØÉúÖ«ÌåºÍÆ÷¹ÙµÄÆæÒìø£»
4.Éú³¤Òò×ÓTGF-¦Â2ºÍBMP4¿Éʹ³ÉÊìϸ°ûת»¯Îª³ÉÈ˸Éϸ°û£»
5.ÉúÃüÖØ´óÐԵı¬·¢¿ÉÄܱØÐèÏÈÓÐÏßÁ£Ìå·ºÆð£»
6.»ÆÜËÌÀ¿É¼õÇ᳦°©»¼Õß»¯ÁÆËðÉË£»
7.ϸ°ûÉú³¤µ÷¿ØÒÀÀµÏ¸°ûÖʺ˴«Ê䣻
8.¶´ó¢³¤ÊÙÑо¿»ò½â¿ªÐàÂõÖ®ÃÕ£»
9.Ö¬·¾¿ÉÓÃ×÷ϸ°ûÄÚÔÚpH¸ÐÊÜÆ÷£»
10.·¢Ã÷ÉÏÆ¤×éÖ¯ÖÐÉñÃØÃâÒßϸ°ûµÄ¹¦Ð§ºÍ»úÀí£»
11.ϸ°û¹é³²·¨Ê¹Íû¬Ä¤ÊàÅ¦ÃæÔÙÉú£»
12.¿ØÖÆÏ¸°û·Ö½âµÄÁ¦Ñ§ÒòËØ£»
13.Òªº¦»ùÒò¿ØÖƲ¸È鶯Îï×éÖ¯ÔÙÉú£»
14.ϸ°ûÔ˶¯µÄÕûÌåµ÷¿Ø¿ØÖÆÅßÌ¥µÄÉú³¤£»
15.Ê״η¢Ã÷¿É·¢Óý³ÉÂѵĸÉϸ°û;
16.¾«×ÓÐγÉÀú³ÌÖеÄϸ°ûÔÚһ׼ʱÆÚÄÚ¿ÉÒﱊȯ¸Éϸ°û£»
17.¡°»îÌåÉúÎï·´Ó¦Æ÷¡±¡°Ôλ¡±×÷ÓýÔÙÉúÐÂÆ÷¹Ù£»
18.·¢Ã÷°ßÂíÓãÔìѪ¸Éϸ°ûÌìÉúÆøÀí¡£