ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨Ê®Æß£©
£¨07.26 --08.01 / 2010£©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úÐÂ
¡¡¡¡±¾Öܶ¯Ì¬°üÀ¨ÒÔÏÂÄÚÈÝ£º¿ÆÑ§¼ÒÊèÉ¢³öÈËÀàÅßÌ¥ÖÐÅß²ã×æÏ¸°û£»Òªº¦»ùÒò¿ØÖƲ¸È鶯Îï×éÖ¯ÔÙÉú£»Òªº¦»ùÒò¿ØÖƲ¸È鶯Îï×éÖ¯ÔÙÉú£»Ì¨ÍåÑо¿Ö°Ô±·¢Ã÷¡°Äá¹Å¶¡ÊÜÌ塱֤ʵÎüÑÌÖÂÈé°©£»Btbd7»ùÒòµ÷¿ØÉÏÆ¤Ï¸°û¶¯Á¦Ñ§¼°·ÖÖ§ÐÎ̬µÄ±¬·¢£»ÌÇÄò²¡ÓëÉúÎï½ÚÂÉÓйأ»µ¥Ï¸°û»ùÒò±í´ïÆÊÎöʱ´úµÄÀ´ÁÙ¡£
1. ¿ÆÑ§¼ÒÊèÉ¢³öÈËÀàÅßÌ¥ÖÐÅß²ã×æÏ¸°û
¡¾ÕªÒª¡¿¿Æ¼¼ÈÕ±¨ Ðû²¼Ê±¼ä£º2010-7-28 10:57:56
¡¡¡¡ÔÚ×îÐÂÒ»ÆÚµÄÃÀ¹ú¡¶¹ú¼Ò¿ÆÑ§ÔºÔº¿¯¡·£¨PNAS£©ÍøÂç°æÉÏ£¬ÃÀ¹ú¼ÓÖÝ´óѧÂåÉ¼í¶·ÖУ²¼Â޵¸Éϸ°ûÑо¿ÖÐÐĵĿÆÑ§¼ÒÃÇÐÎòÁËÒ»¸ö±ê¼ÇÈËÀàÅßÌ¥¸Éϸ°û·Ö½â×î³õ½×¶ÎµÄϸ°ûȺ£¬ÕâЩϸ°ûÓɴ˽«½øÈëÒ»¸ö·¢Óý·¾¶£¬²¢×îÖÕÐγÉѪҺ¡¢Ðļ¡¡¢Ñª¹ÜºÍ¹Ç÷ÀµÈ¡£´ËÏî·¢Ã÷»ò½«×ÊÖú¿ÆÑ§¼ÒÃǽ¨Éè³ö¿ÉÓÃÓÚÔÙÉúҽѧµÄ¸üºÃ¡¢¸üÇå¾²µÄ×éÖ¯£¬Ò²½«ÔÊÐí¿ÆÑ§¼ÒÃǸüºÃµØÏàʶ¿É³ÉΪÉíÌåÄÚÈκÎϸ°ûµÄ¶àÐÑĿϸ°ûÓëÄÇЩʧȥÁ˶àÄÜÐÔ¡¢ÕýÔÚÄð³ÉÌØ¶¨×é֯ϸ°ûµÄϸ°ûÖ®¼äµÄ²î±ð¡£ÔÚÔçÆÚ·¢Óý½×¶Î£¬ÈËÀàÅßÌ¥¸Éϸ°û×ñÕÕ3¸ö²î±ðµÄ·¢Óý·¾¶À´ÐγÉ×î³õµÄÉúֳϸ°û²ã£ºÖÐÅ߲㣬ÍâÅß²ãºÍÄÚÅ߲㡣Õâ3¸öÅß²ãϸ°û½ÓÏÂÀ´»áÄð³ÉÖÖÖÖÈËÌå×éÖ¯¡£ÔÚÕâÏîÑо¿ÖУ¬¼ÓÖÝ´óѧÂåÉ¼í¶·ÖУ²¡ÀíѧºÍʵÑéÊÒҽѧ½ÌÊÚ¸ÇÒÁ•¿Ë³¿Ë˹²©Ê¿ºÍËýµÄÍŶӶÔËæºó½«½øÈëÖÐÅ߲㷾¶µÄÈËÀàÅßÌ¥¸Éϸ°û¾ÙÐÐÁËÑо¿£¬´ËÒ»Æð¾¶×îÖÕ½«µ¼ÖÂÐγÉѪҺϸ°û¡¢Ñª¹Ü¡¢ÐÄÔàϸ°û¡¢¼¡Èâ¡¢Èí¹Ç¡¢¹Ç÷ÀºÍÖ¬·¾¡£
¡¡¡¡ÔÚ½«ÈËÀàÅßÌ¥¸Éϸ°û·ÅÈë×÷ÓýÃóÖÐÈýËÄÌìºó£¬Ñо¿Ö°Ô±·¢Ã÷ÕâЩϸ°ûµÄһС²¿·ÖÒÑʧȥÁ˱íÕ÷ϸ°û¶àÄÜ״̬µÄÒ»¸öÖ÷ÒªµÄÍâò±ê¼ÇÌØÕ÷£¬²¢»ñµÃÁËеĴú±íÖÐÅß²ãϸ°ûµÄ±ê¼Ç¡£ÓÉÓÚÕâЩ±ê¼Ç°ÚÉèÔÚϸ°ûÍâò£¬Ê¹ÓÃÌØÒìÐÔ¿¹Ìå¾Í¿É´Ó×÷ÓýÃóµÄÆäËûϸ°ûÖÐÊèÉ¢³öÈËÀàÅßÌ¥ÖÐÅß²ã×æÏ¸°û£¨hEMPϸ°û£©¡£Ñо¿Ö°Ô±ÌåÏÖ£¬hEMPϸ°ûÊÇ´ÓÈËÀàÅßÌ¥¸Éϸ°ûתÄð³ÉÖÐÅß²ãϸ°ûµÄ×î³õ½×¶Îϸ°û¡£Ö»¹ÜÕâЩϸ°ûËÆºõÒ»¶¨»áÐγÉÖÐÅ߲㣬µ«ËüÃÇÉÐδȷ¶¨»áÐγɺÎÖÖÖÐÅß²ã×éÖ¯¡£¿Ë³¿Ë˹µÄÑо¿ÖصãÊÇʹÓÃÈËÀàÅßÌ¥¸Éϸ°ûÖÆÔì³öÔìѪ¸Éϸ°û¡£Ñо¿Åú×¢£¬ÓÉʵÑéÊÒÖеÄÈËÀàѪҺ¸Éϸ°ûÖÆ³ÉµÄÔìѪ¸Éϸ°ûȱ·¦ÔÚ¹ÇËè»òÆê´øÑªÖеÄÔìѪ¸Éϸ°ûËùÓµÓеÄijЩ¹¦Ð§£¬Òò´Ë£¬ÓÉÅßÌ¥¸Éϸ°û¶øÀ´µÄÔìѪ¸Éϸ°û²¢²»¿É·¢Óý³ÉÒ»¸ö×îÀíÏëµÄÃâÒßϵͳ¡£¿Ë³¿Ë˹ϣÍû£¬hEMPϸ°û¿ÉÓÃÓÚ½¨ÉèºÍ¹ÇËèÓëÆê´øÑªÖÐÔìѪ¸Éϸ°ûÒ»Ñù¹¦Ð§Ç¿Ê¢µÄÔìѪ¸Éϸ°û£¬ÕâЩϸ°û½«¿ÉÇå¾²µØÓÃÓÚÈËÌ壬ÒÔÖÎÁÆÖîÈç°×Ѫ²¡ºÍÁ״ϸ°ûѪÐéÖ¢µÈ¼²²¡¡£¾ÆÕ±é²âÊÔ֤ʵ£¬hEMPϸ°ûʧȥÁËÐγɻûÌ¥ÁöµÄÄÜÁ¦£¬¶øÐγɻûÌ¥ÁöµÄÄÜÁ¦ÊÇÅßÌ¥¸Éϸ°ûµÄÒ»¸ö±ê¼Ç¡£¿Ë³¿Ë˹ÌåÏÖ£¬ÕýÊÇ»ùÓÚ¿ÉÄÜÐγɻûÌ¥ÁöµÄΣº¦£¬Ñо¿Ö°Ô±ÆÕ±éÒÔΪÔÚÈËÌåÖÐʹÓöàÐÑĿϸ°û²¢·ÇÁ¼²ß¡£´Ë´ÎÊèÉ¢³öµÄhEMPϸ°ûÓÉÓÚ²»¾ß±¸ÐγɻûÌ¥ÁöµÄÄÜÁ¦£¬Òò´Ë£¬¹ØÓÚ¿ª·¢ÓÃÓÚÈËÌåµÄÖÎÁÆÒªÁìÀ´Ëµ£¬hEMPϸ°ûÓ¦ÊÇÒ»¸öÇå¾²µÄÑ¡Ôñ¡£ÏÖÔÚ£¬Ñо¿Ö°Ô±ÕýÔÚÑо¿ÔõÑùÒÔ×î¼Ñ·½·¨Ö¸µ¼ÕâЩhEMPϸ°û·¢Óý³ÉÖÐÅß²ãϸ°ûÆ×ϵÖеÄÈκÎÀàÐÍ£¬²¢¶ÔÕâЩϸ°û¼ÓÒԲٿأ¬ÒÔʹËüÃÇÔÚÔöÖ³ºÍ·Ö½âʱ³ÉΪ¹¦Ð§ÐÔϸ°û¡£
¡¾µãÆÀ¡¿
¡¡¡¡Ê§È¥ÁËÐγɻûÌ¥ÁöµÄÄÜÁ¦ÀíÂÛÉÏʹÖÐÅß²ã×æÏ¸°û±ÈÅßÌ¥¸Éϸ°ûÔÚÈËÌåÖÐʹÓÃʱ¸üÇå¾²£¬µ«½öÊÇÕâÑù»¹²»¿Éɨ³ý¸Éϸ°ûÁÆ·¨ÏÖÔÚÃæÁÙµÄÕϰ£¬Ò²ÎÞ·¨°ü¹ÜÖÐÅß²ã×æÏ¸°ûÔÚÁÙ´²ÉÏÄÜÀÖ³ÉʹÓá£
¡¾ÔÎÄժ¼¡¿Published online before print July 19, 2010, doi: 10.1073/pnas.1002077107
Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells
Denis Evseenko, Yuhua Zhu, Katja Schenke-Layland, et al.
Our understanding of how mesodermal tissue is formed has been limited by the absence of specific and reliable markers of early mesoderm commitment. We report that mesoderm commitment from human embryonic stem cells (hESCs) is initiated by epithelial-to-mesenchymal transition (EMT) as shown by gene expression profiling and by reciprocal changes in expression of the cell surface proteins, EpCAM/CD326 and NCAM/CD56. Molecular and functional assays reveal that the earliest CD326−CD56+ cells, generated from hESCs in the presence of activin A, BMP4, VEGF, and FGF2, represent a multipotent mesoderm-committed progenitor population. CD326−CD56+ progenitors are unique in their ability to generate all mesodermal lineages including hematopoietic, endothelial, mesenchymal (bone, cartilage, fat, fibroblast), smooth muscle, and cardiomyocytes, while lacking the pluripotency of hESCs. CD326−CD56+ cells are the precursors of previously reported, more lineage-restricted mesodermal progenitors. These findings present a unique approach to study how germ layer specification is regulated and offer a promising target for tissue engineering.
2. Òªº¦»ùÒò¿ØÖƲ¸È鶯Îï×éÖ¯ÔÙÉú
¡¾ÕªÒª¡¿ÈªÔ´£ºPNAS Ðû²¼Ê±¼ä£º2010-7-30 12:37:54
¡¡¡¡Ó뺣Ãà¡¢±âÐγ桢ˮó£ºÍòîó¢ÕâЩ¶¯Îï½çµÄÖ«ÌåÔÙÉú¹Ú¾ü²î±ð£¬²¸È鶯Îïȱ·¦¸½Ö«ÔÙÉúµÄÄÜÁ¦¡£ÏÖÔÚ£¬Ò»ÏîÔÚʵÑéÊÒСÊóÖоÙÐеÄÐÂÑо¿£¬Ê¹ÓÃÕâÏî¡°ÌØ¼¼¡±µÄÒ»¸öÓÐÊýÆÆÀý֤ʵÎúÒ»ÖÖÖ×ÁöÒÖÖÆÒò×ÓÄܹ»×÷Ϊ²¸È鶯ÎïÌåÄÚµÄÔÙÉúÄÜÁ¦Òªº¦µ÷¿ØÒò×Ó¡£Ò»Ð©Ð¡ÊóµÄÓëÖÚ²î±ðÖ®´¦ÔÚÓÚ£¬ÈôÊÇËüÃǵĶú¶äÉϱ»´ÌÁ˸öС¶´£¬ÕâЩÄö³Ý¶¯ÎïÄܹ»Í¨¹ýÒ»ÖÖÔÙÉúÀú³ÌÀ´Ê¹ÉË¿ÚÓúºÏ¡£ÓëÐγɰ̺Û×éÖ¯²î±ðµÄÊÇ£¬É˿ڵÄÖÎÓúÀú³ÌʼÓÚÒ»ÖÖÅß»ù¡ª¡ªÄܹ»±¬·¢Ï¸°ûÔöÖ³ºÍÈ¥·Ö½âµÄÒ»Öֽṹ¡ª¡ªµÄÐγɡ£È»¶øÆù½ñΪֹ£¬ÎªÊ²Ã´ÕâÖÖ¸½Ö«ÔÙÉú½ö½ö»á±¬·¢ÔÚÕâЩ±»¿ÆÑ§¼Ò³ÆÎª¡°Ò½ÁÆÕß¡±µÄСÊóÖÐÈ´ÒÀÈ»ÊǸöδ½âÖ®ÃÕ¡£ÃÀ¹ú±öϦ·¨ÄáÑÇÖݷѳÇWistarÑо¿ÔºµÄKhamilia BedelbaevaºÍͬÊ·¢Ã÷£¬À´×ÔÒ»ÖÖ¡°Ò½ÁÆÕß¡±Ð¡ÊóµÄϸ°û£¬Ò²¾ÍÊÇËùνµÄMRLϸ°û£¬¾ßÓÐÒ»ÖÖ²»Ñ°³£µÄϸ°ûÖÜÆÚ±íÐÍ£¬¼´Ï¸°ûÄܹ»ÔÚG2ºÍM½×¶ÎÖ®¼äµÄ½çÏßÉÏ»ýÀÛ¡£ÕâÌõÄܹ»ÔöÌíϸ°ûÔöֳDZÄܵÄG2/MбÏßÔÚ°üÀ¨´Óˮ󣵽²¸È鶯Îï¸Îϸ°ûµÄÆäËûÔÙÉúϵͳÖÐÒ²Ôø±»·¢Ã÷¡£Á¬Í¬Ï¸°ûµòÍö±ê¼ÇˮƽµÄÔöÌí£¬ÓëÀ´×ÔÒ°ÉúÐÍСÊóµÄϸ°ûÏà±È£¬MRLÏËάÔϸ°û»¹ÌåÏÖ³öÁËÍÑÑõºËÌǺËËᣨDNA£©ËðÉ˼°ÐÞ¸´Ë®Æ½µÄÔöÌí¡£²¸È鶯ÎïÖ×ÁöÒÖÖÆÒò×Óp21ÊÇÒ»ÖÖDNAËðÉËÏìÓ¦ÒÔ¼°Ï¸°ûÖÜÆÚµÄµ÷ÀíÎï¡£ÄÇôÕâÖÖÂѰ×ÖÊÊÇ·ñÒ²ÊDz¸È鶯ÎïÔÙÉúÀú³ÌµÄÒ»¸öÒªº¦µ÷ÀíÒòËØÄØ£¿Ñо¿Ö°Ô±·¢Ã÷£¬ÔÚ¡°Ò½ÁÆÕß¡±Ð¡ÊóµÄMRLϸ°ûÖУ¬p21µÄ±í´ïÊÇȱʧµÄ¡£³ý´ËÖ®Í⣬ͨ¹ýɾ³ýϸ°ûÖÜÆÚÂѰסªÒÀÀµ¼¤Ã¸ÒÖÖÆ¼Á1A£¨CDKN1A£©¡ª¡ªÒ»ÖÖ±àÂëp21µÄ»ùÒò£¬Äܹ»½«·Ç¡°Ò½ÁÆÕß¡±Ð¡Êóת»¯Îª¡°Ò½ÁÆÕß¡±Ð¡Êó£¬Õâ֤ʵÁËÔÚСÊóÖУ¬p21ÊÇÒ»ÖÖÔÙÉúÄÜÁ¦µÄ·´Ïòµ÷ÀíÒòËØ¡£Ñо¿Ö°Ô±ÔÚ×î½ü³öÊéµÄÃÀ¹ú¡¶¹ú¼Ò¿ÆÑ§ÔºÔº¿¯¡·Éϱ¨¸æÁËÕâÒ»Ñо¿Ð§¹û¡£BedelbaevaÍÆ¶Ï£¬ÔÚ¡°Ò½ÁÆÕß¡±Ð¡ÊóÖÐÌá¸ßÔöֳDZÄܲ¢Åãͬ¸ü¸ßˮƽµÄµòÍö£¬½«Ê¹µÃϸ°û·Ö½âµÃÒÔѸËÙ±¬·¢£¬Í¬Ê±²»±ØÃæÁÙÉú³¤³öÖ×ÁöµÄΣº¦£¬´Ó¶øÔö½øÁËÔÙÉúÀú³Ì¡£Ñо¿Ö°Ô±Ï£Íû£¬ÕâЩеķ¢Ã÷»òÐí½«×îÖÕÔÚÁÙ´²ÊÔÑéÖиø³ö´Ì¼¤ÈËÌåÔÙÉúÄÜÁ¦µÄÒªÁì¡££¨ÈªÔ´£º¿ÆÑ§Ê±±¨ Ⱥ·¼£©
¡¾µãÆÀ¡¿
¡¡¡¡´ËÏîÑо¿Ö¤ÊµÁËÔÚСÊóÖУ¬Ö×ÁöÒÖÖÆÒò×Óp21ÊÇÒ»ÖÖÔÙÉúÄÜÁ¦µÄ·´Ïòµ÷ÀíÒòËØ¡£p21±í´ïȱʧµÄ¡°Ò½ÁÆÕß¡±Ð¡ÊóÄÜʹϸ°ûÔÚG2ºÍMÆÚÖ®¼äµÄ½çÏßÉÏ»ýÀÛ£¬Ìá¸ßÔöֳDZÄÜ£¬Ôö½øÁËÔÙÉúÀú³Ì¡£ÕâÒ»·¢Ã÷¸»ºñÁËÎÒÃǹØÓÚ²¸È鶯ÎïÔÙÉúÄÜÁ¦µ÷¿ØÒòËØµÄÊìϤ£¬µ«ÏÖÔÚ»¹Ô¶²»¿É¶Ï¶¨ÆäÁÙ´²Ó¦ÓÃÔ¶¾°¡£
¡¾ÔÎÄժ¼¡¿PNAS March 30, 2010 vol. 107 no. 13 5845-5850
Lack of p21 expression links cell cycle control and appendage regeneration in mice
Khamilia Bedelbaeva, Andrew Snyder, Dmitri Gourevitch et al.
Animals capable of regenerating multiple tissue types, organs, and appendages after injury are common yet sporadic and include some sponge, hydra, planarian, and salamander (i.e., newt and axolotl) species, but notably such regenerative capacity is rare in mammals. The adult MRL mouse strain is a rare exception to the rule that mammals do not regenerate appendage tissue. Certain commonalities, such as blastema formation and basement membrane breakdown at the wound site, suggest that MRL mice may share other features with classical regenerators. As reported here, MRL fibroblast-like cells have a distinct cell-cycle (G2/M accumulation) phenotype and a heightened basal and wound site DNA damage/repair response that is also common to classical regenerators and mammalian embryonic stem cells. Additionally, a neutral and alkaline comet assay displayed a persistent level of intrinsic DNA damage in cells derived from the MRL mouse. Similar to mouse ES cells, the p53-target p21 was not expressed in MRL ear fibroblasts. Because the p53/p21 axis plays a central role in the DNA damage response and cell cycle control, we directly tested the hypothesis that p21 down-regulation could functionally induce a regenerative response in an appendage of an otherwise nonregenerating mouse strain. Using the ear hole closure phenotype, a genetically mapped and reliable quantitative indicator of regeneration in the MRL mouse, we show that the unrelated Cdkn1atmi/Tyj/J p21−/− mouse (unlike the B6129SF2/J WT control) closes ear holes similar to MRL mice, providing a firm link between cell cycle checkpoint control and tissue regeneration.
3. ̨ÍåÑо¿Ö°Ô±·¢Ã÷¡°Äá¹Å¶¡ÊÜÌ塱 ֤ʵÎüÑÌÖÂÈé°©
¡¾ÕªÒª¡¿ÖйúÐÂÎÅÍø Ðû²¼Ê±¼ä£º2010-7-29 10:12:01
¡¡¡¡Ì¨±±Ò½¿Æ´óѧÑо¿ÍŶÓÈÕǰÐû²¼Ò»Ïîҽѧз¢Ã÷³Æ£¬Èé·¿ÉÏÆ¤Ï¸°ûµÄÍâòÓÐijÖÖÄá¹Å¶¡ÊÜÌ壬´ËÊÜÌåÊܵ½ÏãÑÌÖеÄÄá¹Å¶¡´Ì¼¤£¬¾Í»áµ¼ÖÂϸ°û°©»¯¡£Òò´Ë£¬ÎüÑÌ»òÎü¶þÊÖÑ̽«»áµ¼ÖÂÈé°©¡£ Èé·¿ÉÏÆ¤Ï¸°ûÍâòµÄÄá¹Å¶¡ÊÜÌå¦Á9£¬ÔÚÄá¹Å¶¡Ò»Á¬´Ì¼¤Ï£¬Ï¸°ûÌ«¹ý·´Ó¦£¬»á×Ô¶¯»î»¯ÔÙÉú³¤³ö¸ü¶àµÄÊÜÌå¦Á9£¬¾Ã¶ø¾ÃÖ®£¬Ôì³Éϸ°û°©»¯ÓëÖ×ÁöÔöÉú¡£ ¸ÃÑо¿ÍŶӽøÒ»²½·¢Ã÷£¬½«ÊÜÌå¦Á9·´Ó¦Ì«¹ýµÄϸ°ûÖ²ÈëÃâÒßȱÏÝÊóÄÚ£¬°©Ï¸°û¾ÍÏñ²ÈÁËÓÍÃÅÒ»Ñù£¬¿ìËÙÉú³¤£»Ïà·´µØ£¬Ê¹ÓûùÒòµ÷¿ØÊÖÒÕÒÖÖÆ¦Á9µÄ»îÐÔ£¬Ö×Áö¾Í»áÏÔ×ÅËõС¡£¦Á9¶ÔÄá¹Å¶¡ºÜÃô¸Ð£¬Óöµ½7¦ÇM¼ÁÁ¿µÄÄá¹Å¶¡£¬ÔÚ60·ÖÖÓÄÚ£¬¦Á9ÓëÄá¹Å¶¡ÍŽá¾Í»áµÖ´ï±¥ºÍ£¬¶ø¶þÊÖÑÌÖÐÄá¹Å¶¡Å¨¶ÈÔ¼ÓÐ200¦ÇM¡£ Ñо¿ÍŶÓÒ²ÆÊÎö276ÀýµºÄÚÅ®ÐÔ²¡»¼µÄÈé°©×éÖ¯£¬Ö¤Êµ¦Á9ÓëÑÌñ«Óйأ¬ÓÐÑÌñ«Å®ÐԵĦÁ9ÌåÏÖÁ¿£¬ÊÇÎü¶þÊÖÑÌ¡¢Î´ÎüÑÌÕßµÄ2ÖÁ3±¶£¬²¢ÇÒ¦Á9Ô½»îÔ¾Õߣ¬Èé°©Óú¶ñÐÔ£¬·¢Ã÷î¾°©Ê±Í¨³£ÊÇÈé°©ÍíÆÚ»òÄ©ÆÚ¡£¾Ý±¨µÀ£¬ÒÑÍùÎüÑ̽«µ¼ÖÂÈé°©µÄÖ¤¾Ý£¬Ö÷ÒªÀ´×ÔÊ¢Ðв¡Ñ§Óë¼ä½ÓµÄ·Ö×ÓÉúÎïÑо¿£¬ÕâÏîÑо¿ÊÇÕÒµ½Ö±½ÓÖ¤¾Ý£¬ÕâΪδÀ´ÑÐÖÆÈé°©¿¹°©Ò©ÎïÕÒµ½Ö÷ÒªµÄÉúÎï·Ö×Ó±ê°Ð¡£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÏîÑо¿ÕÒµ½ÁËÎüÑ̽«µ¼ÖÂÈé°©µÄÖ±½ÓÖ¤¾Ý£¬³ýΪδÀ´ÑÐÖÆÈé°©¿¹°©Ò©ÎïÕÒµ½Ö÷ÒªµÄÉúÎï·Ö×Ó±ê°ÐÍâ»òÐíÉÐÓÐÖúÓÚ˵·þÅ®ÑÌÃñ½äÑÌÒÔ¼°Å®ÐԾܾø¶þÊÖÑÌ¡£
4. Btbd7»ùÒòµ÷¿ØÉÏÆ¤Ï¸°û¶¯Á¦Ñ§¼°·ÖÖ§ÐÎ̬µÄ±¬·¢
¡¾ÕªÒª¡¿EurekAlert! 2010-7-30 10:31:11
¡¡¡¡ÔÚÅßÌ¥·¢ÓýµÄʱ¼ä£¬ÎÒÃÇÓÐÐí¶àÄÚÔàÆ÷¹ÙÊÇͨ¹ýÉÏÆ¤Ï¸°ûµÄÖØ¸´·ÖÖ§¶øÐγɵġ£Ñо¿Ö°Ô±Ëµ£¬Ò»ÖÖ±»³Æ×÷Btbd7µÄÌØÊâ»ùÒò¶ÔÕâÒ»Àú³ÌÓÐ×ÊÖú¡£ Tomohiro Onodera¼°ÆäͬʶÔСÊóµÄ·¢Óý¾ÙÐÐÁËÑо¿²¢·¢Ã÷£¬Btbd7ÂѰ׿ØÖÆ×ÅÍÙÒºÏٺͷÎÔàÉú³¤µÄÉÏÆ¤Ï¸°û·ÖÖ§¡£Ó¦ÓóÉÏñÊÖÒÕ£¬Ñо¿Ö°Ô±Äܹ»ÊӲ쵽Btbd7µ÷¿Ø×ÅÕâÖÖϸ°û·ÖÖ§ÒÔÐÎ³ÉÆ÷¹ÙÌØÕ÷ÐԽṹËùÐèµÄ¡°ÁÑ϶¡±¡£ Onodera¼°ÆäͬÊÂ˵£¬Btbd7ÊÇͨ¹ýµ÷¿ØÖîÈçSnail2ºÍ E-cadherinµÈÆäËüÂѰ×ÖÊÀ´Íê³ÉÕâÒ»ÊÂÇéµÄ¡£ ËûÃÇ»¹Ëµ£¬¸ÃÂѰ×ÖÊͨ¹ýÒÖÖÆÏ¸°ûÖ®¼äµÄÏ໥ճ¸½¶ø½«Ï¸°ûÊͷųöÀ´£¬²¢Ê¹ËüÃÇÄܹ»Æ¾Ö¤ÔÚ²¸È鶯ÎïÖзÖÖ§Æ÷¹ÙÉú³¤Ëù±ØÐèµÄÆ«ÏòǨáã¡£
¡¾µãÆÀ¡¿
¡¡¡¡¶ÔСÊóµÄ·¢Óý¾ÙÐеÄÑо¿·¢Ã÷Btbd7ÂѰ×ͨ¹ýµ÷¿ØÆäËüÂѰ×ÖÊÀ´Íê³Éµ÷¿ØÍÙÒºÏٺͷÎÔàÉú³¤µÄÉÏÆ¤Ï¸°û·ÖÖ§ÕâÒ»ÊÂÇéµÄ¡£¸ÃÂѰ×ÖÊͨ¹ýÒÖÖÆÏ¸°ûÖ®¼äµÄÏ໥ճ¸½¶ø½«Ï¸°ûÊͷųöÀ´£¬²¢Ê¹ËüÃÇÄܹ»Æ¾Ö¤ÔÚ²¸È鶯ÎïÖзÖÖ§Æ÷¹ÙÉú³¤Ëù±ØÐèµÄÆ«ÏòǨáã¡£¸ÃÑо¿ÓÐÖúÓÚÎÒÃÇÏàʶÅßÌ¥·¢Óýʱϸ°ûµÄǨáãºÍϸ°ûÔ˶¯µÄÕûÌåµ÷¿Ø¡£
¡¾ÔÎÄժ¼¡¿Science DOI: 10.1126/science.1191880
Btbd7 Regulates Epithelial Cell Dynamics and Branching Morphogenesis
Tomohiro Onodera, Takayoshi Sakai, Jeff Chi-feng Hsu, et al.
During embryonic development, many organs form by extensive branching of epithelia through the formation of clefts and buds. In cleft formation, buds are delineated by the conversion of epithelial cell-cell adhesions to cell-matrix adhesions, but the mechanisms of cleft formation are not clear. We have identified Btbd7 as a dynamic regulator of branching morphogenesis. Btbd7 provides a mechanistic link between the extracellular matrix and cleft propagation through its highly focal expression leading to local regulation of Snail2 (Slug), E-cadherin, and epithelial cell motility. Inhibition experiments show that Btbd7 is required for branching of embryonic mammalian salivary glands and lungs. Hence, Btbd7 is a regulatory gene that promotes epithelial tissue remodeling and formation of branched organs.
5. ÌÇÄò²¡ÓëÉúÎï½ÚÂÉÓйØ
¡¾ÕªÒª¡¿Nature 2010-7-30 10:08:12
¡¡¡¡ÔÚ½øÊ³Ê±´ú£¬ÒȵºÉøÍ¸ÒȵºÏòÀ´Î¬³ÖÆÏÌÑÌÇÌåÄÚÆ½ºâ£¬Õâ¸öÓнÚ×àµÄÀú³ÌÔÚÌÇÄò²¡»¼ÕßÌåÄÚ±»ÈÅÂÒÁË¡£ÏÖÔÚ£¬ÓÃСÊóËù×öʵÑéÅú×¢£¬ÒȵºÓÐËüÃÇ×Ô¼ºµÄÉúÎïÖÓ£¬ÔÚ˯Ãß-ËÕÐÑÖÜÆÚÖÐÀ´×éÖ¯ºÍ°²ÅÅÒȵºËصÄÉøÍ¸¡£×ªÂ¼Òò×ÓCLOCK ºÍ BMAL1¶ÔÕâÒ»Àú³ÌºÜÒªº¦£¬Ð¯´øClock ºÍBmal1»ùÒòµÄȱÏݰ汾µÄСÊó»á»¼¡°hypoinsulinaemia¡±£¨ÒȵºËØË®Æ½¹ýµÍÖ¢£©ºÍÌÇÄò²¡¡£ÕâÏîÊÂÇé֤ʵÎúÒ»¸ö¾Ö²¿×éÖ¯µÄÉúÎïʱÖÓÄܹ»ÔÚÒÈÏÙ¦Âϸ°ûÖн«ÉúÎï½ÚÂÉÐźźÍг´úлÐźÅÕûºÏÆðÀ´£¬Ëü˵Ã÷ÉúÎï½ÚÂÉÆÊÎöÊǸüÉîÈëÏàʶ´úлÌåÏÖÐÍÒÔ¼°ÖÎÁÆ2-ÐÍÌÇÄò²¡µÈ´úл¼²²¡µÄÒªº¦¡£
¡¾µãÆÀ¡¿
¡¡¡¡Ð¡ÊóʵÑéµÄЧ¹û֤ʵÎúÌÇÄò²¡µÄ±¬·¢ÓëÒȵº×Ô¼ºµÄÉúÎïÖÓÓйأ¬Ò»¸ö¾Ö²¿×éÖ¯µÄÉúÎïʱÖÓÄܹ»ÔÚÒÈÏÙ¦Âϸ°ûÖн«ÉúÎï½ÚÂÉÐźźÍг´úлÐźÅÕûºÏÆðÀ´£¬ÕâÒ»·¢Ã÷¿ÉÄÜÓÐÖúÓÚÌÇÄò²¡¸¨ÖúÖÎÁÆ¡£
¡¾ÔÎÄժ¼¡¿Nature 466, 627-631 (29 July 2010) | doi:10.1038/nature09253
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
Biliana Marcheva, Kathryn Moynihan Ramsey, Ethan D. Buhr£¬et al.
The molecular clock maintains energy constancy by producing circadian oscillations of rate-limiting enzymes involved in tissue metabolism across the day and night. During periods of feeding, pancreatic islets secrete insulin to maintain glucose homeostasis, and although rhythmic control of insulin release is recognized to be dysregulated in humans with diabetes, it is not known how the circadian clock may affect this process. Here we show that pancreatic islets possess self-sustained circadian gene and protein oscillations of the transcription factors CLOCK and BMAL1. The phase of oscillation of islet genes involved in growth, glucose metabolism and insulin signalling is delayed in circadian mutant mice, and both Clock and Bmal1 (also called Arntl) mutants show impaired glucose tolerance, reduced insulin secretion and defects in size and proliferation of pancreatic islets that worsen with age. Clock disruption leads to transcriptome-wide alterations in the expression of islet genes involved in growth, survival and synaptic vesicle assembly. Notably, conditional ablation of the pancreatic clock causes diabetes mellitus due to defective ¦Â-cell function at the very latest stage of stimulus¨Csecretion coupling. These results demonstrate a role for the ¦Â-cell clock in coordinating insulin secretion with the sleep¨Cwake cycle, and reveal that ablation of the pancreatic clock can trigger the onset of diabetes mellitus.
6. µ¥Ï¸°û»ùÒò±í´ïÆÊÎöʱ´úµÄÀ´ÁÙ
¡¾ÕªÒª¡¿
¡¡¡¡¿ÆÑ§¼ÒÃÇ¿ËÈÕÊ×´ÎʵÏÖÁ˶ÔÎïÖÖÔÚÕû¸ö±í´ïÆ×¹æÄ£ÄÚµÄÂѰױí´ïÔëÉùÕÉÁ¿¡£¸ÃÏîЧ¹ûÊǵ¥·Ö×ÓÊÖÒÕÓëϵͳÉúÎïѧ½»»¥ÈںϵĹ淶£¬Ô¤Ê¾Á˵¥Ï¸°û»ùÒò±í´ïÆÊÎöʱ´úµÄÀ´ÁÙ¡£ÔÚ»ùÒò±í´ïÑо¿ÁìÓò£¬¹Å°åµÄÑо¿ÒªÁìÊÇÔÚÒ»ÂÉÌõ¼þÏÂÄ¥Ëé´ó×Úϸ°û£¬È»ºóÕÉÁ¿»ùÒò²úÆ·µÄÊýÄ¿£¬ÀýÈçmRNAºÍÂѰס£È»¶ø×î½üµÄÑо¿È´·¢Ã÷£¬¿´ÆðÀ´ÍêÈ«ÏàͬµÄµ¥¸öϸ°ûÏÖʵÉϱí´ïˮƽÍêÈ«ÊÇËæ»úµÄ£¬±£´æ×ÅÖØ´óµÄ¸öÌå²î±ð£¬¿ÆÑ§¼Ò³ÆÖ®Îª¡°ÔëÒô¡±¡£¿ÆÑ§¼ÒÃÇÔÚÑо¿µ¥Ï¸°ûÉúÎïÌåµÄ¡°ÔëÒô¡±Ê±·¢Ã÷£¬×ÝÈ»ÊÇ»ùÒòÍêÈ«ÏàͬµÄϸ°ûÆäÐÐΪҲÊÇÍêÈ«²î±ðµÄ¡£ÕÉÁ¿²î±ðÉúÎïÌåÄÚµÄÂѰױí´ïÔëÒô¿ÉÒÔ×ÊÖú¿ÆÑ§¼ÒÃÇÏàʶÉúÃüµÄÑÝ»¯ºÍ¹¦Ð§¡£
¡¡¡¡¹þ·ð´óѧ»¯Ñ§ÓëÉúÎﻯѧϵлÏþÁÁС×é×îеÄÑо¿Ð§¹û½«¸ÃÁìÓò´øÈëÁËÒ»¸öеĸ߶ȡ£ 7ÔÂ30ÈÕ×îÐÂÒ»ÆÚÃÀ¹ú¡¶¿ÆÑ§¡·½ÒÏþÁËÌâΪ¡¶´ó³¦¸Ë¾úÂѰ××鼰ת¼×éµ¥·Ö×ÓˮƽÕÉÁ¿¡·µÄÂÛÎÄ£¬±¨µÀÁ˴󳦸˾úµÄ1018¸ö»ùÒòÔÚµ¥¸öϸ°ûÄڵľø¶Ô±í´ïÊýÒÔ¼°¸÷¸öϸ°û¼äµÄ²î±ð£¬ÕâЩ»ùÒòÕ¼Á˴󳦸˾úÈ«»ùÒò×éµÄËÄ·ÖÖ®Ò»×óÓÒ¡£ËûÃÇ»¹Í¬Ê±ÕÉÁ¿ÁËÆäÖÐ137¸ö´ó×Ú±í´ïµÄ»ùÒòµÄmRNA·Ö×ÓÊýÄ¿¡£Ö»¹ÜÔÚͬ»ùÒò×éϸ¾úȺµÄϸ°ûÖУ¬ÂѰ׺ÍmRNA¿½±´Êý²î±ðÖØ´ó£¬²»¹ýͨ³£ÊýÄ¿½ÏС£¬ÄÑÒÔÔÚµ¥·Ö×ÓˮƽÉϼì²â¡£Ð»ÏþÁÁС×éµÄÑо¿Ö°Ô±Ê¹ÓÃ×Ô¼º´î½¨µÄÒ»Ì×ȫеĴ󳦸˾ú»ÆÉ«Ó«¹âÂѰ×ÈںϿ⣬ÀֳɵØÊµÏÖÁ˵¥¸öϸ°ûÄÚÔÚµ¥·Ö×Óˮƽ¶ÔÕû¸ö±í´ïÆ×¹æÄ£ÄÚµÄÂѰ׺ÍmRNAµÄ¶¨Á¿ÆÊÎö¡£¸ÃÏîÑо¿ÓÐÁ½¸ö¾ªÈ˵ķ¢Ã÷¡£Ê×ÏÈ£¬20%µÄÂѰ×Öʱí´ïˮƽºÜµÍ£¬Ð¡ÓÚÿ¸öϸ°ûÒ»¸ö·Ö×Ó¡£Ñо¿Ö°Ô±·¢Ã÷µ±±í´ïˮƽ½ÏµÍµÄʱ¼ä£¬ÏÕЩËùÓеÄÂѰ×ÂþÑܾù¿ÉÓÃÁ½¸ö²ÎÊýµÄÙ¤ÂêÂþÑÜÀ´ÐÎò£¬Ò²¾ÍÊÇmRNAµÄת¼ËÙÂʺÍÿ¸ömRNA·Ö×Ó±í´ïΪÂѰ×ÖʵÄÊýÄ¿¡£¶øµ±±í´ïˮƽ½Ï¸ßµÄʱ¼ä£¬ÂþÑÜͼ±»ÆäËûµÄÍⲿÔëÒôËù³äÂú¡£×÷ÕßµÄÁíÒ»Ö÷Òª·¢Ã÷ÊÇ£¬µ¥Ï¸°ûÖÐij»ùÒòÔÚijһʱ¿ÌµÄmRNA±í´ï¿½±´ÊýÓëÆäÂѰױí´ï¿½±´ÊýÎ޹أ¬Óɴ˿ɼû£¬µ¥¸öϸ°ûÖеÄÂѰ××éÆÊÎöÓëת¼×éÆÊÎöÊÇûÓйØÁªµÄ¡£ÓÉÓÚϸ°ûÖÐijЩ¹¦Ð§»ùÒòµÄÂѰ×Öʺ;ø´ó´ó¶¼mRNA µÄ¿½±´Êý¶¼Ï൱µÍ£¬ÕâÏîÑо¿Ð§¹ûÌṩµÄÒªÁ콫´ó´óÔö½ø¿ÆÑ§¼Ò¶Ô»ùÒòËæ»ú±í´ïºÍµ÷¿ØµÄÃ÷È·¡£ ÕâÖÖ¹ØÁªÐÔȱʧµÄÒ»¸öÔµ¹ÊÔÓÉÊÇmRNA·Ö×ÓºÍÂѰ×ÖÊ·Ö×ÓÔÚϸ°ûÄÚµÄÊÙÃüÊǷDzî±ð¡£mRNA Ö»±£´æ¼¸·ÖÖÓ£¬¶øÂѰ×ÖÊ·Ö×Ó¿ÉÒÔ±£´æÊý¸öСʱ£¬´ó´óÁè¼Ýϸ°ûÖÜÆÚ¡£±ðµÄ£¬¶ÔÐí¶àϸ°û¶øÑÔ£¬Ò»Ð©ÂѰ׵ÄΨһȪԴÀ´×ÔÓÚĸϸ°û£¬¶ømRNAÖ»ÊÇÎÞÒⱬ·¢¡£Õâ¾Íµ¼ÖÂÁËÔÚϸ°ûÆÆËéÀú³ÌÖÐijЩÂѰ×ÖÊ·Ö×Ó·ÖÅɲ»Æ½ºâ£¬ÕâÖÖÕ÷ÏóÔÚ²¸È鶯Îïϸ°ûÖÐͬÑù±£´æ¡££¨ÈªÔ´£º¿ÆÑ§Íø×ۺϱ¨µÀ£©
¡¾µãÆÀ¡¿
¡¡¡¡µ¥¸öϸ°ûÄÚÔÚµ¥·Ö×Óˮƽ¶ÔÕû¸ö±í´ïÆ×¹æÄ£ÄÚµÄÂѰ׺ÍmRNAµÄ¶¨Á¿ÆÊÎöÊÖÒյķºÆð»á¿ÉÄܻἫ´óµÄ¸Ä±äºÍÍÆ½øÈËÃǶÔϸ°ûÄÚ²¿Ô˶¯µÄÊìϤ£¬»áÔÚÒ»¸öÏà¶ÔÍêÕûµÄÌõÀíÉÏÈ¥Ñо¿Ï¸°ûÄÚ²¿µÄÉúÃü¼ÍÂÉ¡£
¡¾ÔÎÄժ¼¡¿Science 30 July 2010:Vol. 329. no. 5991, pp. 533 - 538
Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells
Yuichi Taniguchi, Paul J. Choi, Gene-Wei Li, et al.
Protein and messenger RNA (mRNA) copy numbers vary from cell to cell in isogenic bacterial populations. However, these molecules often exist in low copy numbers and are difficult to detect in single cells. We carried out quantitative system-wide analyses of protein and mRNA expression in individual cells with single-molecule sensitivity using a newly constructed yellow fluorescent protein fusion library for Escherichia coli. We found that almost all protein number distributions can be described by the gamma distribution with two fitting parameters which, at low expression levels, have clear physical interpretations as the transcription rate and protein burst size. At high expression levels, the distributions are dominated by extrinsic noise. We found that a single cell¡¯s protein and mRNA copy numbers for any given gene are uncorrelated.