Ò»¾º¼¼

English Ò»¾º¼¼¼¯ÍÅÆóÒµÓÊÏä

ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨ÈýÊ®ËÄ£©

2010Äê-12ÔÂ-05ÈÕ ÈªÔ´£ºmebo

£¨11.29 -- 12.05 / 2010£©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úР

¡¡¡¡±¾Öܶ¯Ì¬°üÀ¨ÒÔÏÂÄÚÈÝ£ºÀÏÊóʵÑéÅú×¢ÐÞ¸´¶ËÁ £¿ÉÒÔÄæ×ªÐàÂõ  £»·¢Ã÷еĿ¹°©ÃâÒßϸ°û  £»Lkb1Ôö½øÔìѪ¸Éϸ°ûÉúÑÄ  £»³ÉÊìѪϸ°ûÓëÆäÇ×´ú¸Éϸ°ûµÄÐÅÏ¢·´À¡  £»·Ö×Ó¡°¿ª¹Ø¡±Ó°ÏìÐàÂõºÍ´úл¼²²¡  £»¹²Éú¾úÓ°Ïì¹ûÓ¬µÄ½»ÅäÇãÏò¡£

1. ÀÏÊóʵÑéÅú×¢ÐÞ¸´¶ËÁ £¿ÉÒÔÄæ×ªÐàÂõ
¡¾ÕªÒª¡¿
¡¡¡¡¾ÝÏã¸Û¡¶ÎĻ㱨¡·11ÔÂ30ÈÕ±¨µÀ£¬¹þ·ð¿ÆÑ§¼Ò×î½üÆÆÌì»ÄµØÁîÄêÂõµÄÀÏÊóÆ÷¹Ù»ñµÃÐÂÉú£¬ÀÖ³ÉÄæ×ªÐàÂõÀú³Ì£¬ÕâÏîÍ»ÆÆÐ§¹û»òÓÐÍû·ÀÖÎÄÔÍË»¯Ö¢(ÀÏÈ˳մôÖ¢)¡¢ÌÇÄò²¡ºÍÐÄÔಡµÈ¼²²¡£¬ÉõÖÁÓÐÍû·­¿ªÓÀºãÇà´ºµÄÉñÃØ£¬½øÒ»²½ÂõÏòÑÐÖÆ¡°ÓÀÉú²»ÀÏÒ©¡±¡ £¿ÆÑ§ÔÓÖ¾¡¶×ÔÈ»¡·ÍøÕ¾28ÈÕ¿¯µÇÃÀ¹ú¹þ·ðҽѧԺµÄ¿ÆÑб¨¸æ£¬Ñо¿Ô±ËÇÑøÁËһЩ¾­»ùÒòˢеÄÀÏÊó£¬ÁîËüÃÇÒòȱ·¦¡°¶ËÁ£Ã¸¡±(telomerase)¶øÎ´ÀÏÏÈË¥£¬·ºÆðÐá¾õË¥ÍË¡¢ÄÔ²¿ËõС¡¢²»Óý¡¢³¦²¿ºÍÆ¢ÔàÊÜËðµÈ¼²²¡£¬Ê¹ËüÃÇÆ¤·ô¡¢´óÄÔ¡¢ÄÚÔàºÍÆäËüÆ÷¹ÙÀÏ»¯¡£
Ëùν¡°¶ËÁ£¡±£¬ÊÇָȾɫÌå×îºóµÄDNAÖØ¸´ÐòÁУ¬×÷ÓÃÊǼá³ÖȾɫÌåµÄÍêÕûÐÔ¡£¡°¶ËÁ£¡±µÄ³¤¶È·´Ó¦×Åϸ°û¸´ÖÆÊ·¼°¸´ÖÆÇ±ÄÜ£¬±»³Æ×÷ϸ°ûÊÙÃüµÄ¡°ÓÐË¿ÆÆËéÖÓ¡±¡£±¨µÀ³Æ£¬¿ÆÑÐÖ°Ô±½«ÕâЩÀÏÊó·ÖΪÁ½×飬°ÑÒ»ÖÖÃûΪ¡°4-ôÇ»ùËûĪÎô·Ò¡±µÄ׼ʱÊÍ·ÅÒ©ÎֲÈëÆäÖÐÒ»×éÀÏÊóµÄƤÏ£¬ÖØÆôËüÃÇÌåÄÚÐÝÃߵġ°¶ËÁ£Ã¸¡±»ùÒò¡£Ð§¹ûÔڶ̶Ì1¸öÔÂÄÚ£¬×¢ÉäÒ©ÎïµÄÀÏÊóÌåÄÚ³¤³öÐí¶àеÄϸ°û£¬Ö÷ÒªÆ÷¹ÙÔË×÷¹¦Ð§¸ÄÉÆ£¬ÉíÌå²îδ¼¸ÍêÈ«¡°·µÀÏ»¹Í¯¡±£¬ÐÛÐÔÀÏÊó¸ü»Ö¸´ÉúÓý¹¦Ð§¡£×¢ÉäÒ©ÎïµÄʵÑéÊó×îÖջÕý³£ÊóµÄÊÙÃü£¬µ«²¢²»±ÈͨË×ÊóÊÙÃü³¤¡£
¾ÙÐÐÑо¿µÄµÂƤÄá°Â²©Ê¿ÌåÏÖ£¬ÊµÑéÊó¶ÔÈËÀà¶øÑÔ£¬¾ÍÏñÒ»¸ö40ËêµÄÈË£¬ÉíÌåδÀÏÏÈË¥Ïñ80¶àËêµÄÀÏÈË£¬¶øÕâÏîʵÑéÄæ×ªÐàÂõÀú³Ì£¬°ÑËû±ä»Ø50ËêÒ»Ñùƽ³£¡£µÂƤÄá°Â˵£º¡°ÕâЩÊÇÑÏÖØÐàÂõµÄ¶¯Îµ«¾­ÓÉÒ»¸öÔÂÖÎÁƺó£¬ËüÃÇÒÑÓÐÏêϸ¿µ¸´¼£Ï󣬰üÀ¨ÄÔ²¿³¤³öеÄϸ°û¡£¡±ËûÖ¸³ö£¬ÕâÊÇÊ×´ÎÓÐÀÏÊóʵÑéÀֳɰÑÐàÂõÀú³ÌÄæ×ª£¬Òâζ×ÅһЩÀÏ»¯µÄÆ÷¹ÙÒ²ÓС°ÖØÉú¡±µÄ¿ÉÄÜ¡£
²»¹ý£¬Òª°ÑÕâÒ»¿Æ¼¼Ó¦ÓÃÓÚÈËÌåÉíÉϽ«»á½ÏΪÄÑÌ⣬ÀÏÊóÒ»ÉúÖж¼ÄÜÖÆÔì¶ËÁ£Ã¸£¬¿ÉÊÇÈËÀൽ³ÉÄêºó±ã»á×Ô¶¯¡°¹Øµô¡±ÕâÖÖ»ùÒò£¬´Ó¶ø×èֹϸ°ûÔöÌíʧ¿Ø£¬ÒÔÃâת»¯³É°©Ö¢¡£Òò´Ë£¬ÌáÉýÈËÌåµÄ¡°¶ËÁ£Ã¸¡±Ë®Æ½ËäÈ»»òÓÐÖú¼õ»ºÐàÂõËÙÂÊ£¬µ«Í¬Ê±ÔöÌí»¼°©µÄΣº¦¡£µÂƤÄá°ÂÒÔΪ£¬¡°TERT¡±ÁÆ·¨ÈôÊÇÊǷֽ׶ξÙÐУ¬ºÍÖ»ÓÃÓÚÉíÌåûÓа©Ï¸°û¼°½ÏΪÄêÇáµÄÈËÉíÉÏ£¬ÁÆ·¨»ò¶ÔÈËÌåÇå¾²¡£Å£½ò´óѧÉúÎﻯѧ¼Ò¿¼¿Ë˹ÒÔΪ£¬ÕâÏîÑо¿¡°ºÜÊÇÖ÷Òª¡±£¬Ö¤ÊµÔ­ÔòÉÏ¶ÌÆÚ»Ö¸´³ÉÈËÌåÄڵġ°¶ËÁ£¡±£¬ÄÜÁîÄêÂõµÄ×éÖ¯ÖØÉúºÍ»Ö¸´ÐÄÀí¹¦Ð§¡££¨ÈªÔ´£ºÖйúÐÂÎÅÍø Ðû²¼Ê±¼ä£º2010-11-30 11:05:34£©

¡¾µãÆÀ¡¿
¡¡¡¡¸Ã»ùÒòË¢ÐÂÀÏÊóÊÔÑéµÚÒ»´ÎÔÚ¶¯ÎïÉíÉÏʵÏÖÁËͨ¹ýÐÞ¸´¶ËÁ£¶ø¡°·µÀÏ»¹Í¯¡±£¬ËäÈ»ÔÚÕý³£ÐàÂõµÄÀÏÊóÉíÉÏ»¹Î´ÓÐÑо¿ÒÔ¼°Ó¦ÓÃÔÚÈËÌåÉÏ»¹Ò£Ò£ÎÞÆÚ£¬¿ÉÊÇËü֤ʵÎú»Ø¸´¶ËÁ £¿ÉÒÔÄæ×ªÐàÂõ¡£ÕâÔÚ¶¯ÎïʵÑé·½ÃæÎªÈËÌåÔÙÉú»Ø¸´¿ÆÑ§ÔÙÌíÓÐÀûÖ¤¾Ý£¬Ö¤ÊµÐàÂõ×éÖ¯ÊÇ¿ÉÒԻظ´µ½ÄêÇá̬µÄ¡£

¡¾Ô­ÎÄժ¼¡¿Nature advance online publication doi:10.1038/nature09603
Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice
Mariela Jaskelioff, Florian L. Muller, Ji-Hye Paik, et al.
An ageing world population has fuelled interest in regenerative remedies that may stem declining organ function and maintain fitness. Unanswered is whether elimination of intrinsic instigators driving age-associated degeneration can reverse, as opposed to simply arrest, various afflictions of the aged. Such instigators include progressively damaged genomes. Telomerase-deficient mice have served as a model system to study the adverse cellular and organismal consequences of wide-spread endogenous DNA damage signalling activation in vivo1. Telomere loss and uncapping provokes progressive tissue atrophy, stem cell depletion, organ system failure and impaired tissue injury responses. Here, we sought to determine whether entrenched multi-system degeneration in adult mice with severe telomere dysfunction can be halted or possibly reversed by reactivation of endogenous telomerase activity. To this end, we engineered a knock-in allele encoding a 4-hydroxytamoxifen (4-OHT)-inducible telomerase reverse transcriptase-oestrogen receptor (TERT-ER) under transcriptional control of the endogenous TERT promoter. Homozygous TERT-ER mice have short dysfunctional telomeres and sustain increased DNA damage signalling and classical degenerative phenotypes upon successive generational matings and advancing age. Telomerase reactivation in such late generation TERT-ER mice extends telomeres, reduces DNA damage signalling and associated cellular checkpoint responses, allows resumption of proliferation in quiescent cultures, and eliminates degenerative phenotypes across multiple organs including testes, spleens and intestines. Notably, somatic telomerase reactivation reversed neurodegeneration with restoration of proliferating Sox2+ neural progenitors, Dcx+ newborn neurons, and Olig2+ oligodendrocyte populations. Consistent with the integral role of subventricular zone neural progenitors in generation and maintenance of olfactory bulb interneurons, this wave of telomerase-dependent neurogenesis resulted in alleviation of hyposmia and recovery of innate olfactory avoidance responses. Accumulating evidence implicating telomere damage as a driver of age-associated organ decline and disease risk and the marked reversal of systemic degenerative phenotypes in adult mice observed here support the development of regenerative strategies designed to restore telomere integrity.

2. ·¢Ã÷еĿ¹°©ÃâÒßϸ°û

¡¾ÕªÒª¡¿
¡¡¡¡µ¤Âó¿ÆÑÐÖ°Ô±²»¾Ãǰ·¢Ã÷Ò»ÖÖеÄÃâÒßϸ°ûÄÜЭÖú¶Ô¿¹°©Ö¢¡£ËûÃÇÕý¾Ý´ËÑÐÖÆÒ»ÖÖÐÂÐͰ©Ö¢ÒßÃ磬ÏÖÔÚÕýÔÚ¾ÙÐÐÁÙ´²ÊÔÑé¡£ÈËÌåÃâÒßÒÖÖÆÏ¸°ûºÍ°©Ï¸°û¿ÉÒÔ±¬·¢Ò»ÖÖÌØÊâµÄË«¼ÓÑõø£¬À´ÒÖÖÆÃâÒßϸ°ûµÄ¹¥»÷ÐÔ£¬Ê¹Æäȱ·¦×ã¹»¹¥»÷Á¦¶Ô¿¹°©Ï¸°ûÇÖÏ®£¬ÉõÖÁ»¹»á±»°©Ï¸°ûÍÌÊÉ¡£Ë«¼ÓÑõøµÄ±£´æÊ¹ÏÖÓа©Ö¢ÒßÃçµÄÓÐÓÃÐÔ´ó´òÕÛ¿Û¡£µ¤Âóº£À³ÎÚÒ½Ôº°©Ö¢ÃâÒßÖÎÁÆÖÐÐĵÄÑо¿ÕßÔÚ×îÐÂÒ»ÆÚÃÀ¹úѧÊõ¿¯ÎѪҺ¡·Éϱ¨¸æËµ£¬ËûÃÇ·¢Ã÷ÈËÌåÃâÒßϵͳÖб£´æÒ»ÖÖ´Ëǰδ֪µÄϸ°û£¬ÕâÖÖϸ°û¿ÉÒÔɱËÀÄÇЩ±¬·¢Ë«¼ÓÑõøµÄϸ°û¡£Ð·¢Ã÷µÄϸ°ûÔÚìî³ýÃâÒßÒÖÖÆÏ¸°ûµÄͬʱ£¬»¹ÄÜÖ±½Ó¹¥»÷°©Ï¸°û¡£
Ïòµ¼ÕâÏîÑо¿µÄÂí˹¡¤¹þ¶û¡¤°²µÂɭ˵£¬Ñо¿Ð¡×éÕýÔÚÑÐÖÆÒ»ÖÖÐÂÐͰ©Ö¢ÒßÃ磬ͨ¹ýÔöÌíÉÏÊö¿¹°©Ï¸°ûµÄÊýÄ¿£¬Ìá¸ß»úÌåÃâÒßϵͳµÄ¹¥»÷Á¦£¬´Ó¶ø¶Ô¿¹°©Ö¢¡£º£À³ÎÚÒ½ÔºÕýÓÃÐÂÒßÃç¶ÔһЩ·Î°©»¼Õß¿ªÕ¹ÁÙ´²ÊÔÑ飬ÏÖÔÚµÄÖÎÁÆÐ§¹ûÏÔןÃÓÚͨÀýÁÆ·¨¡£Ñо¿Ð¡×éÒÔΪ£¬´ÓÔ­ÀíÉÏ˵£¬ÕâÖÖ¿ÉÓÐÓÃÒÖÖÆË«¼ÓÑõø±¬·¢µÄ°©Ö¢ÒßÃçÓÐÍûÓëÆäËûÁÆ·¨Ð­Í¬ÖÎÁƶàÖÖ°©Ö¢¡££¨ÈªÔ´£ºÐ»ªÍø 2010-12-2 10:33:22£©

¡¾µãÆÀ¡¿
еÄÃâÒßϸ°û¼ÈÄÜìî³ýÃâÒßÒÖÖÆÏ¸°û£¬»¹ÄÜÖ±½Ó¹¥»÷°©Ï¸°û£¬¹ØÓÚ¶Ô¿¹°©Ï¸°ûÊǺÃÐÂÎÅ¡£¿ÉÊÇÁíÒ»·½Ã棬еÄÃâÒßϸ°ûµÄÊýÄ¿ºÍ»îÁ¦ÐèҪСÐÄ¿ØÖÆ£¬ÊÇ·ñ»áµ¼ÖÂ×ÔÌåÃâÒßÎÊÌâÒ²ÐèÒª½øÒ»²½³ÎÇå¡£

¡¾Ô­ÎÄժ¼¡¿Blood, Nov 2010; doi:10.1182/blood-2010-06-288498
Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune regulators
Rikke Bæk Sørensen, Sine Reker Hadrup, Inge Marie Svane, et al.
Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme that is implicated in suppressing T-cell immunity in normal and pathological settings. Here, we describe that spontaneous cytotoxic T-cell reactivity against IDO exists not only in cancer patients but also in healthy individuals. We show that the presence of such IDO-specific CD8+ T cells boosted T-cell immunity against viral or tumor-associated antigens by eliminating IDO+ suppressive cells. This had profound effects on the balance between IL-17-producing CD4+ T cells and regulatory T cells. Furthermore, this caused an increase in the production of the pro-inflammatory cytokines IL-6 and TNF- while decreasing the IL-10 production. Finally, the addition of IDO-inducing agents (i.e. the TLR9 ligand CpG, soluble CTLA4 or IFN-) induced IDO-specific T cells among PBMC from cancer patients as well as healthy donors. In the clinical setting, IDO may serve as an important and widely applicable target for immunotherapeutic strategies where IDO play a significant regulatory role. The present describe for the first time effector T cells with a general regulatory function that may play a vital role for the mounting or maintaining of an effective adaptive immune response. We suggest terming such effector T cells "supporter T cells".

3. Lkb1Ôö½øÔìѪ¸Éϸ°ûÉúÑÄ

¡¾ÕªÒª¡¿
¡¡¡¡ÔìѪ¸Éϸ°û¶Ô¸ßÄܺÍÑõ»¯Ñ¹Á¦ºÜÊÇÃô¸Ð£¬¶ÔËüÃǵľ²Ö¹ÓëÔöÖ³Ö®¼äµÄƽºâ¾ÙÐе÷¿ØÊÇÏìÓ¦´úлѹÁ¦¡¢Í¬Ê±¼á³ÖÆäºã¾ÃÔÙÉúÄÜÁ¦ËùÐèÒªµÄ¡£ÐµÄÑо¿Åú×¢£¬Lkb1Ö×ÁöÒÖÖÆÒò×Ӻʹúл´«¸ÐÆ÷ÔÚά³ÖÔìѪϸ°ûµÄÄÜÁ¿Æ½ºâÖÐÆðÒªº¦×÷Ó㬱»·¢Ã÷ÊÇϸ°ûÖÜÆÚµ÷¿Ø¼°ÄÜÁ¿Æ½ºâËù±ØÐèµÄ£¬ÔìѪ¸Éϸ°ûϸ°ûÖÜÆÚµ÷ÀíºÍÉúÑĶÔLkb1µÄÒÀÀµÐÔҪǿÓÚÆäËûÔìѪϸ°û¡£

¡¾µãÆÀ¡¿
¡¡¡¡¶ÔÔìѪ¸Éϸ°ûµÄÉúÃüÊôÐԺʹúл»úÖÆÓÖ¶àÁËЩÏàʶ¡£

¡¾Ô­ÎÄժ¼¡¿Nature doi:10.1038/nature09571
Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
Daisuke Nakada, Thomas L. Saunders & Sean J. Morrison
Little is known about metabolic regulation in stem cells and how this modulates tissue regeneration or tumour suppression. We studied the Lkb1 tumour suppressor and its substrate AMP-activated protein kinase (AMPK), kinases that coordinate metabolism with cell growth. Deletion of the Lkb1 (also called Stk11) gene in mice caused increased haematopoietic stem cell (HSC) division, rapid HSC depletion and pancytopenia. HSCs depended more acutely on Lkb1 for cell-cycle regulation and survival than many other haematopoietic cells. HSC depletion did not depend on mTOR activation or oxidative stress. Lkb1-deficient HSCs, but not myeloid progenitors, had reduced mitochondrial membrane potential and ATP levels. HSCs deficient for two catalytic ¦Á-subunits of AMPK (AMPK-deficient HSCs) showed similar changes in mitochondrial function but remained able to reconstitute irradiated mice. Lkb1-deficient HSCs, but not AMPK-deficient HSCs, exhibited defects in centrosomes and mitotic spindles in culture, and became aneuploid. Lkb1 is therefore required for HSC maintenance through AMPK-dependent and AMPK-independent mechanisms, revealing differences in metabolic and cell-cycle regulation between HSCs and some other haematopoietic progenitors.

4. ³ÉÊìѪϸ°ûÓëÆäÇ×´ú¸Éϸ°ûµÄÐÅÏ¢·´Ïì

¡¾ÕªÒª¡¿
¡¡¡¡°Ä´óÀûÑÇÄ«¶û±¾Walter and Eliza Hall InstituteµÄÒ»Ïî×îÐÂÑо¿Åú×¢³ÉÊìѪϸ°ûÄܹ»ÓëÇ×´ú¸Éϸ°û¡°Ïàͬ¡±£¬²¢Ó°ÏìÆäÐÐΪ¡  £»úÌåÄÚѪϸ°û·´Ïì»·µÄ·¢Ã÷ΪÑо¿¸Éϸ°ûÐÔÄÜÔÓÂÒÒýÆðµÄ¼²²¡¼°¿ª·¢ÐµÄÖÎÁÆÒªÁ쿪·¢ÁËÐÂõè¾¶¡£Ñо¿Ð§¹û½ÒÏþÔÚ11ÔÂ29ÈÕµÄPNASÉÏ£¬Õ¹ÏÖÁËÒÔǰδ֪µÄѪϸ°û¼äµÄÏ໥¹ØÏµ¡£
À´×Ô·Ö×ÓҽѧϵµÄCarolyn de Graaf²©Ê¿ºÍDoug Hilton½ÌÊÚÒÔ¼°À´×Ô°©Ö¢ºÍѪҺ²¡Ñ§ÏµµÄWarren AlexanderÏòµ¼Á˸ÃÏîÑо¿¡£¡°ÎÒÃÇÖªµÀѪҺ¸Éϸ°û¿ÉÌìÉúËùÓÐÀàÐ͵ijÉÊìѪϸ°û¡ £¿ÆÑ§¼ÒÃÇÒ»Ö±ÒâÁÏÊÇÍⲿµÄÒòËØµ÷¿ØÁËѪϸ°ûÌìÉú£¬²¢ÇÒÁ½¸öȺÌåÏ໥ÁæØê±£´æ£¬¡±Hilton½ÌÊÚ˵£º¡°È»¶øÐÂÑо¿Åú×¢³ÉÊìϸ°ûÊÂʵÉϿɷ´×÷ÓÃÓÚ¸Éϸ°û£¬¸Ä±äÆä»ùÒò±í´ïÒÔ¼°Ó°ÏìËüÃǵÄÐÐΪ¡£¡±Ñо¿Ö°Ô±·¢Ã÷Ѫϸ°ûÒì³ £¿ÉÒýÆð·´Ï컷ʧµ÷£¬½ø¶ø¶ÔѪҺ¸Éϸ°û±¬·¢Ó°Ïì¡£Ñо¿Ö°Ô±ÔÚ¶¯ÎïÄ£×ÓÖÐÑо¿ÁËÒ»ÖÖÒÖÖÆÑªÐ¡°åÌìÉúµÄת¼Òò×ÓMyb£¬ÔÚ¼ì²âMybȱʧ¶Ôϸ°ûµÄÓ°Ïìʱ·¢Ã÷ÁËÕâÒ»Õ÷Ïó¡£de Graaf²©Ê¿ËµMyb»ùÒòȱʧ¿Éµ¼Ö¶¯ÎïѪҺÖб¬·¢¸ßˮƽµÄѪС°å£¬´Ó¶øÒýÆðά³Ö¸Éϸ°ûµÄÐźÅ;¾¶±¬·¢¸Ä±ä¡£¡°µ±ÐźÅ;¾¶±¬·¢¸Ä±äʱ£¬ÕâЩ¸Éϸ°û²»ÔÙά³ÖÔÚÒ»ÖÖ¡®¾²Ö¹×´Ì¬¡¯£¬¶øÊÇÔÚÒ»Ö±µØÑ­»·£¬ÌìÉú³ÉÊì¸Éϸ°û£¬¡±de Graaf²©Ê¿Ëµ£º¡°×îÖÕ¸Éϸ°û»áºÄ¾¡£¬ÓÉÓÚȱ·¦×ã¹»µÄ¸Éϸ°ûÌìÉúеĺìϸ°ûºÍ°×ϸ°û£¬´Ó¶øµ¼Ö»úÌåѪҺ¼²²¡±¬·¢¡£¡±±ðµÄ£¬Ñо¿Ö°Ô±»¹Ê¹ÓÃÐÂÒ»´úµÄ»ùÒò×éÊÖÒÕÅжÏÁËȱÏÝÐźÅËùÖµÄѪҺ¸Éϸ°ûÖеĻùÒò±ê¼Ç¡£ÕâЩ»ùÒò±ê¼ÇÓпÉÄÜÔÚδÀ´ÓÃÓÚÕï¶ÏºÍ¸¨Öú¼²²¡ÖÎÁÆ¡£¡°ÈôÊÇÎÒÃÇÄܹ»ÏàʶÕâЩ»ùÒòÔÚ¸Éϸ°ûά³ÖºÍѪϸ°ûÌìÉúÖеÄÖ÷Òª×÷Óã¬ÎÒÃǾÍÄܹ»ÕÒµ½Ò»Ð©ÐÂ;¾¶Ìá¸ßÒÆÖ²ÊÖÒÕºÍѪҺ¼²²¡µÄÖÎÁÆ£¬¡±de Graaf²©Ê¿Ëµ¡£Hilton½ÌÊÚÒÔΪз¢Ã÷½«Ê¹ÄÇЩ¸Éϸ°ûË¥½ßµÄ»¼ÕßÊÜÒæ¡£¡°ÎÒÃÇËùÒª×öµÄÊÂÇé¾ÍÊÇÈ·¶¨ÕâЩ¸Éϸ°ûµÄË¥½ßÊÇ·ñÊÇÓÉÓÚ³ÉÊìѪϸ°ûºÍ¸Éϸ°ûÖ®¼äµÄ¹ýʧÏàͬËùÖ£¬ÕâЩ·¢Ã÷½«ÓпÉÄÜ´ÙʹÎÒÃÇÕÒµ½ÐµÄ;¾¶ÖÎÁÆÕâЩ¼²²¡£¬¡±Hilton½ÌÊÚ˵¡££¨Science Daily 2010-12-1 10:23:13 £©

¡¾µãÆÀ¡¿
¡¡¡¡¸Éϸ°ûµÄÔ˶¯¼ÍÂÉÊܵ½»úÌåµÄϵͳµ÷¿Ø£¬³ÉÊìϸ°û»á·´ÏìÐÅÏ¢µ½µ÷¿ØÏµÍ³À´µ÷Àí¸Éϸ°ûµÄÔ˶¯¡£ËµÃ÷Ò»¸öϵͳÀïµÄÉÏÏÂÓβ¿·Ö²»ÊÇÏ໥×ÔÁ¦µÄ£¬Ò»¸öÕûÌåÀïµÄ¸÷¸öÌåÊÇÏ໥¹ØÁªµÄ£¬Ò»¸ö¸öÌåµÄÒì³£Ó°ÏìµÄ²»µ«½öÊÇ×ÔÉí¡£   
¡¾Ô­ÎÄժ¼¡¿PNAS  doi: 10.1073/pnas.1016166108
Regulation of hematopoietic stem cells by their mature progeny
Carolyn A. de Graafa,b, Maria Kauppic, et al.
Thrombopoietin (TPO), acting through its receptor Mpl, has two major physiological roles: ensuring production of sufficient platelets via stimulation of megakaryocyte production and maintaining hematopoietic stem cell (HSC) quiescence. Mpl also controls circulating TPO concentration via receptor-mediated internalization and degradation. Here, we demonstrate that the megakaryocytosis and increased platelet mass in mice with mutations in the Myb or p300 genes causes reduced circulating TPO concentration and TPO starvation of the stem-cell compartment, which is exacerbated because these cells additionally exhibit impaired responsiveness to TPO. HSCs from MybPlt4/Plt4 mice show altered expression of TPO-responsive genes and, like HSCs from Tpo and Mpl mutant mice, exhibit increased cycling and a decline in the number of HSCs with age. These studies suggest that disorders of platelet number can have profound effects on the HSC compartment via effects on the feedback regulation of circulating TPO concentration.

5. ·Ö×Ó¡°¿ª¹Ø¡±Ó°ÏìÐàÂõºÍ´úл¼²²¡

¡¾ÕªÒª¡¿
¡¡¡¡À´×ÔHarvard School of Public HealthµÄ¿ÆÑ§¼Ò·¢Ã÷Ò»ÖÖ·Ö×Ó¡°¿ª¹Ø¡±Äܹ»¹Ø±ÕijЩϸ°ûÀú³ÌÀ´¶Ô¿¹ÐàÂõºÍ´úл¼²²¡¡£Ö»¹Ü»¹ÐèÒª¸ü¶àµÄÑо¿£¬ÕâÒ»·¢Ã÷ºÜ¿ÉÄÜÓÐÖúÓÚ¿ª·¢ÐµÄ;¾¶À´ÖÕÖ¹»ò¼õÂýÖîÈç2ÐÍÌÇÄò²¡ºÍÐÄÔಡµÈ´úл¼²²¡µÄÏ£Íû¡£ÓûùÒòˢеÄÀÏÊóÄ£×Ó£¬Ñо¿ÐàÂõÀú³ÌÖÐת¼¸¨ÒÖÖÆÎïSMRT (silencing mediator of retinoid and thyroid hormone receptors)ÂѰ׵Ä×÷Ó㬷¢Ã÷ÐàÂõϸ°û»ýÀÛÁ˸ü¶àµÄSMRTÂѰס£ÔÚ´ó´ó¶¼´úл×éÖ¯ÖÐSMRTµÄ±í´ïºÍÍŽᵽPPARÊÜÌåËæÄêËêÔöÌí¡£SMRTͨ¹ýRID1ºÍRID2Á½¸ö½á¹¹Óòµ÷ÀíºËÊÜÌåÐźÅ;¾¶¡£Í¨¹ý»ùÒò¹¤³ÌÑ¡ÔñÐÔʧ»îRID1£¬Ê¹SMRTÍŽá×ªÒÆµ½RID2Ïà¹ØºËÊÜÌ壬ÔöÇ¿ÁËϸ°û¶ÔÑõ»¯ËðÉ˵ÄÃô¸ÐÐÔ£¬ÒýÆðÔçË¥ºÍÏà¹Ø´úл¼²²¡°éÓÐÏßÁ£Ì幦Ч½µµÍºÍ¿¹Ñõ»¯»ùÒò±í´ï¡£

¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿¸»ºñÁ˹ØÓÚÐàÂõµÄÃ÷È·ºÍ¿¹ÀÏ»¯Í¾¾¶µÄ̽Ë÷¡£

¡¾Ô­ÎÄժ¼¡¿Cell Metabolism, 2010; DOI: 10.1016/j.cmet.2010.11.007
Nuclear Receptor Corepressor SMRT Regulates Mitochondrial Oxidative Metabolism and Mediates Aging-Related Metabolic Deterioration.
Shannon M. Reilly, Prerna Bhargava, Sihao Liu, et al.
The transcriptional corepressor SMRT utilizes two major receptor-interacting domains (RID1 and RID2) to mediate nuclear receptor (NR) signaling through epigenetic modification. The physiological significance of such interaction remains unclear. We find SMRT expression and its occupancy on peroxisome proliferator-activated receptor (PPAR) target gene promoters are increased with age in major metabolic tissues. Genetic manipulations to selectively disable RID1 (SMRTmRID1) demonstrate that shifting SMRT repression to RID2-associated NRs, notably PPARs, causes premature aging and related metabolic diseases accompanied by reduced mitochondrial function and antioxidant gene expression. SMRTmRID1 cells exhibit increased susceptibility to oxidative damage, which could be rescued by PPAR activation or antioxidant treatment. In concert, several human Smrt gene polymorphisms are found to nominally associate with type 2 diabetes and adiponectin levels. These data uncover a role for SMRT in mitochondrial oxidative metabolism and the aging process, which may serve as a drug target to improve health span.

6. ¹²Éú¾úÓ°Ïì¹ûÓ¬µÄ½»ÅäÇãÏò

¡¾ÕªÒª¡¿
¡¡¡¡Í¨³£ÒÔΪ½»ÅäÇãÏòÊÇÔÚÎïÖÖÐγÉÔçÆÚ¾ÍÈ·Á¢µÄÊÂÇé¡£¸ÃÑо¿Í¨¹ý¹ûӬʵÑé·¢Ã÷ÌåÄÚ¹²Éú¾úÒ²»áÓ°Ïì¹ûÓ¬½»ÅäÇãÏò¡£Í¨¹ýÓòî±ðʳÎïÎ¹ÑøÓÉͳһȺ¹ûÓ¬·Ö³ÉµÄÁ½×飬´Ëºó»ìÏýÁ½×é¹ûÓ¬£¬·¢Ã÷¹ûÓ¬ÇãÏòÓÚºÍͬ×éµÄ¹ûÓ¬½»Å䣬¸ÃÇãÏò´ÓµÚÒ»´ú¿ÉÒ»Á¬ÖÁÉÙ37´ú¡£¶øÎ¹Ê³ÖмÓÈ뿹ÉúËØÄÜÏû³ýÕâÖÖÇãÏòÐÔ£¬Åú×¢ÊǹûÓ¬¾úȺµÄÔµ¹Ê¡£½øÒ»²½Ñо¿Åú×¢ÕâЩ¹²Éú¾ú»á¸Ä±ä¹ûÓ¬±íƤµÄÐÔÐÅÏ¢ËØË®Æ½´Ó¶øÓ°ÏìÆä½»ÅäÇãÏò¡£

¡¾µãÆÀ¡¿
Ô½À´Ô½¶àµÄÑо¿Åú×¢¹²Éú¾úȺ¶Ô¶¯ÎïÓÐ×ÅÖ÷ÒªÓ°Ïì¡£

¡¾Ô­ÎÄժ¼¡¿PNAS  DOI: 10.1073/pnas.1009906107
Commensal bacteria play a role in mating preference of Drosophila melanogaster
G. Sharon, D. Segal, J. M. Ringo, et al.
Development of mating preference is considered to be an early event in speciation. In this study, mating preference was achieved by dividing a population of Drosophila melanogaster and rearing one part on a molasses medium and the other on a starch medium. When the isolated populations were mixed, ¡°molasses flies¡± preferred to mate with other molasses flies and ¡°starch flies¡± preferred to mate with other starch flies. The mating preference appeared after only one generation and was maintained for at least 37 generations. Antibiotic treatment abolished mating preference, suggesting that the fly microbiota was responsible for the phenomenon. This was confirmed by infection experiments with microbiota obtained from the fly media (before antibiotic treatment) as well as with a mixed culture of Lactobacillus species and a pure culture of Lactobacillus plantarum isolated from starch flies. Analytical data suggest that symbiotic bacteria can influence mating preference by changing the levels of cuticular hydrocarbon sex pheromones. The results are discussed within the framework of the hologenome theory of evolution.
 

ÍøÕ¾µØÍ¼