Ò»¾º¼¼

English Ò»¾º¼¼¼¯ÍÅÆóÒµÓÊÏä

ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨ÈýÊ®Èý£©

2010Äê-11ÔÂ-28ÈÕ ÈªÔ´£ºmebo

£¨11.22 -- 11.28 / 2010£©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úР

¡¡¡¡±¾Öܶ¯Ì¬°üÀ¨ÒÔÏÂÄÚÈÝ£ºÉú³¤Òò×ÓTGF-¦Â2ºÍBMP4¿Éʹ³ÉÊìϸ°ûת»¯Îª³ÉÈ˸Éϸ°û£»Ö¬·¾×éÖ¯¿ÉÌìÉúÃâÒßϸ°û£»Ô¤Éè»ùÒòÏß·¿ÉָʾÈËÌåϸ°û°´Ðè·Ö½â£»ÎÞÐ趯ÎïʵÑé¼´¿É¿ìËÙɸѡ¿¹°©Ò©Î»Ö¸´p53¹¦Ð§ÎªÖ÷µÄÖ×ÁöÁÆ·¨µÄ¾ÖÏÞÐÔ£»ÂѰ×øÌåÖúÉúֳϸ°û¡°·µÀÏ»¹Í¯¡±  ¡£

1. Éú³¤Òò×ÓTGF-¦Â2ºÍBMP4¿Éʹ³ÉÊìϸ°ûת»¯Îª³ÉÈ˸Éϸ°û
¡¾ÕªÒª¡¿
¡¡¡¡¾ÝÃÀ¹úÎïÀíѧ¼Ò×éÖ¯Íø11ÔÂ21ÈÕ±¨µÀ£¬¹þ·ðҽѧԺºÍ¹þ·ðÑÀ¿ÆÑ§ÔºµÄÑо¿Ö°Ô±ÔÚ11ÔÂ21ÈÕ³öÊéµÄ¡¶×ÔÈ»¡ªÒ½Ñ§¡·ÔÓÖ¾ÉÏ׫ÎÄÖ¸³ö£¬Í¨¹ýÄ£ÄâÒ»ÖÖÓÐÊýµÄÒÅ´«¼²²¡£¬ËûÃÇÄܹ»ÈóÉÊìϸ°û»Øµ½³ÉÈ˸Éϸ°û״̬£¬Ð»ñµÃµÄÕâÖÖ¸Éϸ°ûÄÜ·Ö½â³ÉÖݪֲî±ðÀàÐ͵Äϸ°û£¬ÔÚ×÷ÓýÃóºÍ¶¯ÎïÉíÉϾÙÐеÄÊÔÑé¶¼»ñµÃÁËÀֳɡ£¹þ·ðҽѧԺµÄϸ°ûÉúÎïѧ¼Ò¡¢¹þ·ðÑÀ¿ÆÑ§ÔºÔº³¤²¼Ô¼¶÷¡¤°Â¶ûÉ­ÌåÏÖ£¬Ð·¢Ã÷ÔÚ¸öÐÔ»¯Ò½ÁƺÍ×éÖ¯¹¤³ÌѧÁìÓò¾ßÓÐÖ÷ÒªÒâÒå¡£¾ÙÐÐÐԹǻ¯ÐÔÏËάÔöÖ³²»Á¼Ö¢£¨FOP£©ÊÇÒ»ÖÖÓÐÊýµÄÏÈÌìÐÔÖ²ÐÐÔ¼²²¡£¬È«ÇòÔ¼ÓÐ1000Ãû»¼Õߣ¬ÆäÁÙ´²ÌåÏÖΪ²¡È˵ĹÇ÷À¼¡ºÍÈí½áµÞ×éÖ¯»áÖ𲽹ǻ¯¶øµ¼ÖÂÉíÌå±äµÃ½©Ó²£¬ÏÖÔÚ»¹Ã»ÓÐÓÐÓÃÖÎÁÆÒªÁì¡£
¡¡¡¡¹þ·ðҽѧԺºÍ²¨Ê¿¶Ù±´Ë¹ÒÔÉ«ÁÐŮִÊÂÒ½ÁÆÖÐÐĵÄҽѧָµ¼Ô±´÷Ã×¶÷¡¤ÃÀµÚÆæ·¢Ã÷£¬ÓëͨË×¹Ç÷À×éÖ¯²î±ðµÄÊÇ£¬FOP²¡ÈËÌåÄÚ²¡Ì¬µÄÈí¹ÇºÍ¹Çͷϸ°ûÖаüÀ¨ÓÐÄÚÆ¤Ï¸°ûµÄÉúÎï±ê¼Ç¡£ÕâÈÃËû±¬·¢ÁËÒ»¸öÒÉÎÊ£¬²¡È˵ÄÈí¹ÇºÍ¹ÇÍ·ÊÇ·ñÆðÔ´ÓÚÄÚÆ¤Ï¸°ûÄØ £¿ÃÀµÚÆæºÍͬʽ«Òý·¢FOPµÄ±äÒì»ùÒòת±äΪÁËÕý³£µÄÄÚÆ¤Ï¸°û¡£ÁîÈËÒâÏë²»µ½µÄÊÇ£¬ÄÚÆ¤Ï¸°û½Ó×Åת»¯ÎªÁËÒ»ÖÖеÄϸ°ûÀàÐÍ£¬ÕâÖÖϸ°ûÄܹ»ÆÆËéΪ¹ÇÍ·¡¢Èí¹Ç¡¢¼¡Èâ¡¢Ö¬·¾ÉõÖÁÉñ¾­Ï¸°ûµÄ³ÉÈ˸Éϸ°û»ò¹ÇËè¼ä³äÖʸÉϸ°û¡£½øÒ»²½µÄʵÑé·¢Ã÷£¬Ç·ºà¹ý±äÒìµÄ»ùÒòÀ´ÓÕµ¼ÕâÖÖת±ä£¬Ñо¿Ö°Ô±Ò²Äܹ»Ê¹ÓÃÁ½ÖÖÌØ¶¨µÄÂѰ×ÖÊ£¨Éú³¤Òò×ÓTGF-beta2ºÍBMP4£©ÖеÄÈκÎÒ»ÖÖÀ´×÷ÓýÄÚÆ¤Ï¸°û£¬ÕâЩÂѰ×ÖʵÄϸ°û½»»¥×÷ÓÃÄ£ÄâÁ˱äÒì»ùÒòµÄ×÷Óã¬Õâ¸ø¿ÆÑ§¼ÒÌṩÁËÒ»ÖÖ¸üÓÐÓõÄÖØ×éϸ°ûµÄÒªÁì¡£Ö®ºó£¬Ñо¿Ö°Ô±½«ÕâÐ©ÖØ×éµÄϸ°û»®·Ö·ÅÈë×÷ÓýÃóÖкͶ¯ÎïÉíÉÏ£¬ËüÃÇ×îÖÕ·¢Óý³ÉÁËÒ»×éÏà¹ØµÄ×éÖ¯ÀàÐÍ¡£
¡¡¡¡ÃÀµÚÆæÌåÏÖ£¬ÕâЩеÄϸ°ûͬ¹ÇËè¼ä³äÖʸÉϸ°û²¢²»ÍêȫһÑù£¬ÀåÇåÕâµãºÜÊÇÖ÷Òª£¬µ«ËüÃǶ¼¾ß±¸ÀàËÆÓÚ¹ÇËè¼ä³äÖʸÉϸ°ûµÄDZÁ¦ºÍ¿ÉËÜÐÔ¡£°Â¶ûÉ­³Æ£¬ÕâÌ×ϵͳµÄǿʢÐÔÔÚÓÚ£¬ÕâÖ»ÊÇÒ»¸ö×ÔÈ»Àú³ÌµÄÖØ¸´£¬´ÓÕâ¸öÒâÒåÉÏÀ´Ëµ£¬ÓëÏÖÔÚÆäËû¶Ôϸ°û¾ÙÐÐÖØ×éµÄÒªÁìÏà±È£¬ÆäÈ˹¤¸ÉÔ¤¸üÉÙ¡£È«ÇòFOPÁìÓòµÄר¼Ò¡¢±öϦ·¨ÄáÑÇÖÝ´óѧҽѧԺµÄÕûÐÎÍâ¿Æ·Ö×Óҽѧ½ÌÊÚ¸¥À×µÂÀï¿Ë¡¤¿¨ÆÕÀ¼Ò²ÊǸÃÑо¿µÄºÏ×÷Õߣ¬ËûÌåÏÖ£¬Ð·¢Ã÷ÈÃÈËÃÇÊ×´ÎÖªµÀÔõÑùʹÓÃÕâ¸öÀú³ÌÀ´ÖÆÔ첡È˼±ÐèµÄÌØÊâ¹Ç÷À¡£ÃÀµÚÆæºÍ°Â¶ûÉ­»ØÓ¦³Æ£¬ÕâЩ·¢Ã÷×îÖ±½ÓµÄÓ¦Óý«ÊÇ×éÖ¯¹¤³ÌѧºÍ¸öÐÔ»¯Ò½ÁÆÁìÓò¡ £¿ÆÑ§¼ÒÏàÐÅ£¬Ä³Ò»Ì죬½ÓÊÜÒÆÖ²µÄ²¡ÈË¿ÉÄÜ»áÌáÈ¡³ö×Ô¼ºµÄÄÚÆ¤Ï¸°û£¬È»ºó¾ÙÐÐÖØ×飬½ÓמͿÉÒÔ³¤³ÉËûÃÇÐèÒªµÄ×éÖ¯ÀàÐÍÀ´ÓÃÓÚÒÆÖ²£¬²¢ÇÒ²»»á·ºÆðÇãÔþ·´Ó¦¡£(ȪԴ£º¿Æ¼¼ÈÕ±¨ Ðû²¼Ê±¼ä£º2010-11-24 13:30:59)

¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÏîÑо¿ÌṩÁËÒ»ÖÖ·Ç»ùÒòÖØ×é·½·¨ÌåÍâÅàÓýÄÚÆ¤Ï¸°ûת»¯Îª¸Éϸ°û£¬ÓÉÓÚïÔÌ­ÁËÈËΪ¸ÉÔ¤£¬ÄÜΪϸ°ûÒÆÖ²Ìṩ¸üºÃµÄϸ°ûÔ´¡£ÈôÊÇ´ËÀà¸Éϸ°ûÅàÓýÊÖÒÕ¿ÉÒÔÏñԭλÔÙÉúҽѧһÑùÔÚ»îÌåÉÏÇå¾²ÓÐÓõØÊµÏÖ£¬¾Í¿ÉÒÔ×èֹϸ°ûÒÆÖ²¼°Æä¸±×÷Óá£

¡¾Ô­ÎÄժ¼¡¿Nature Medicine (2010) doi:10.1038/nm.2252
Conversion of vascular endothelial cells into multipotent stem-like cells
Damian Medici, Eileen M Shore, Vitali Y Lounev, et al.
Mesenchymal stem cells can give rise to several cell types, but varying results depending on isolation methods and tissue source have led to controversies about their usefulness in clinical medicine. Here we show that vascular endothelial cells can transform into multipotent stem-like cells by an activin-like kinase-2 (ALK2) receptor¨Cdependent mechanism. In lesions from individuals with fibrodysplasia ossificans progressiva (FOP), a disease in which heterotopic ossification occurs as a result of activating ALK2 mutations, or from transgenic mice expressing constitutively active ALK2, chondrocytes and osteoblasts expressed endothelial markers. Lineage tracing of heterotopic ossification in mice using a Tie2-Cre construct also suggested an endothelial origin of these cell types. Expression of constitutively active ALK2 in endothelial cells caused endothelial-to-mesenchymal transition and acquisition of a stem cell¨Clike phenotype. Similar results were obtained by treatment of untransfected endothelial cells with the ligands transforming growth factor-¦Â2 (TGF-¦Â2) or bone morphogenetic protein-4 (BMP4) in an ALK2-dependent manner. These stem-like cells could be triggered to differentiate into osteoblasts, chondrocytes or adipocytes. We suggest that conversion of endothelial cells to stem-like cells may provide a new approach to tissue engineering.

2. Ö¬·¾×éÖ¯¿ÉÌìÉúÃâÒßϸ°û
¡¾ÕªÒª¡¿
¡¡¡¡·¨¹ú¹ú¼Ò¿ÆÑÐÖÐÐÄ11ÔÂ22ÈÕ½ÒÏþ¹«±¨³Æ£¬¸Ã»ú¹¹µÄÑо¿Ö°Ô±ÈÕǰ·¢Ã÷£¬ÀÏÊóµÄÖ¬·¾×éÖ¯Äܹ»ÌìÉú¶Ô¿¹¹ýÃôºÍ·¢Ñ×µÄÃâÒßϸ°û£¬ÕâÒ»Ñо¿Ð§¹ûÇ㸲ÁË¿ÆÑ§½çÒÔǰµÄ¿´·¨£¬ÓÐÖúÓÚÐÂÒ©µÄÑÐÖÆ¡£¹«±¨³Æ£¬Ö¬·¾×éÖ¯²»µ«ÊÇÓÍÖ¬µÄ¡°Öü´æ¿â¡±£¬ËüÔÚÉúÎïг´úлÀú³ÌÖÐҲʩչ×ÅÖ÷Òª×÷Óã¬ÀýÈç°×ɫ֬·¾×éÖ¯Öоͺ¬ÓÐѪҺÖеľÞÊÉϸ°ûºÍÁܰÍϸ°û£¬ÕâЩÔìѪϸ°ûÔÚ°×ɫ֬·¾×éÖ¯ÖÐÔ¼Õ¼20%¡£´ËǰÈËÃÇÒ»Ö±ÒÔΪ£¬ÕâЩÔìѪϸ°ûÖ»ÄÜÀ´×Ô¹ÇË裬ÊÇ´ÓÔìѪ¸Éϸ°ûÖÐÊèÉ¢³öÀ´µÄ¡£²»¹ý¹ú¼Ò¿ÆÑÐÖÐÐĵÄÑо¿Ö°Ô±È´µÃ³öÁ˲î±ðµÄ½áÂÛ£¬ËûÃÇͨ¹ýʵÑé·¢Ã÷£¬ÀÏÊóµÄÖ¬·¾×éÖ¯×Ô¼º¾ÍÄܹ»ÌìÉúÔìѪ¸Éϸ°û£¬ºóÕß³ýÁË·Ö½â³öÔìѪϸ°û£¬»¹»á·Ö½â³ö·Ê´óϸ°û¡£·Ê´óϸ°ûÊÇÒ»ÖÖÃâÒßϸ°û£¬ÔÚ¼¡Ì忹»÷¹ýÃôºÍ·¢Ñ×ÖÐʩչ×ÅÖÁ¹ØÖ÷ÒªµÄ×÷Óá£
¡¡¡¡Ñо¿Ö°Ô±ÌåÏÖ£¬·Ê´óϸ°ûÔÚÃâÒßϵͳÖÐÎÞ´¦²»ÔÚ£¬Æä×÷ÓÃÔ¶±ÈÈËÃÇÏëÏóµÄÒª´ó£¬¶øÖ¬·¾×é֯ͨ³£Õ¼µ½Ò»¸ö³ÉÈËÌåÖØµÄ10%µ½50%£¬ÈôÊÇËûÃÇÄܹ»½øÒ»²½Ö¤Êµ£¬ÈËÌåµÄÖ¬·¾×éÖ¯Ò²ÄÜÌìÉú·Ê´óϸ°û£¬ÄÇô½«¸øÔìѪºÍÃâÒßϵͳ¼²²¡»¼Õß´øÀ´Ï£Íû¡£¸ÃÑо¿Ð§¹ûÒѾ­½ÒÏþÔÚ×îÐÂÒ»ÆÚµÄÃÀ¹ú¡¶¸Éϸ°û¡·ÔÓÖ¾ÉÏ¡££¨ÈªÔ´£ºÐ»ªÉç Àîѧ÷£©

¡¾µãÆÀ¡¿
¡¡¡¡ÕâÒ»·¢Ã÷½øÒ»²½½«Ö¬·¾×éÖ¯ºÍÃâÒßϵͳϸÃÜÁªÏµÔÚÒ»Æð¡£Í¬Ê±Ò²½øÒ»²½Ö¤ÊµÖ¬·¾×éÖ¯ÄÜÖü´æºÍÉú²ú¸Éϸ°û¡£

¡¾Ô­ÎÄժ¼¡¿STEM CELLS 2010;28:2065¨C2072
Adipose Tissue as a Dedicated Reservoir of Functional Mast Cell Progenitors
Sandrine Poglio, Fabienne De Toni-Costes, Emmanuelle Arnaud, et al.
White adipose tissue (WAT) is a heterogeneous tissue, found in various locations throughout the body, containing mature adipocytes and the stroma-vascular fraction (SVF). The SVF includes a large proportion of immune hematopoietic cells, among which, mast cells that contribute to diet-induced obesity. In this study, we asked whether mast cells present in mice adipose tissue could derive from hematopoietic stem/progenitor cells (HSPC) identified in the tissue. We therefore performed both in vitro and in vivo experiments dedicated to monitoring the progeny of WAT-derived HSPC. The entire study was conducted in parallel with bone marrow-derived cells, considered the gold standard for hematopoietic-lineage studies. Here, we demonstrate that adipose-derived HSPC contain a precursor-cell population committed to the mast cell lineage, and able to efficiently home to peripheral organs such as intestine and skin, where it acquires properties of functional tissue mast cells. Additionally, WAT contains a significant mast cell progenitor population, suggesting that the entire mast cell lineage process take place in WAT. Considering the quantitative importance of WAT in the adult organism and the increasing roles recently assigned to mast cells in physiopathology, WAT may represent an important source of mast cells in physiological and pathological situations.

3.  Ô¤Éè»ùÒòÏß·¿ÉָʾÈËÌåϸ°û°´Ðè·Ö½â

¡¾ÕªÒª¡¿
¡¡¡¡¾Ý¡¶×ÔÈ»¡·ÍøÕ¾11ÔÂ25ÈÕ±¨µÀ£¬ÃÀ¹úÉúÎïѧ¼ÒÑо¿³öÒ»ÖÖ»ùÒòÏß·£¬¿ÉÒÔÆ¾Ö¤ÐèÒªÌåÀý³ÌÐò£¬Ö¸Ê¾Ï¸°û¶ÔÏëÒªµÄÐźÅ×÷³öÏìÓ¦¡£ÕâÏîÊÖÒÕÓÐ×ÅÆÕ±éÓÃ;£¬ºÃ±ÈÓÕµ¼¸Éϸ°û·Ö½â³ÉÌåÄڵIJî±ð×éÖ¯£¬»òÔÚÓªÑø²»Á¼Ê±¼¤»îÖ²ÎïµÄ·ÀÓù»úÖÆµÈ¡£Ïà¹ØÑо¿½ÒÏþÔÚ11ÔÂ26ÈÕ³öÊéµÄ¡¶¿ÆÑ§¡·ÔÓÖ¾ÉÏ¡£¡°´ÓÆÕ±éÒâÒåÉϽ²£¬¾ÍÊǶÔϸ°ûµÄÐÐΪºÍ¾öÒé¾ÙÐпØÖÆ£¬ÈÃÆä¶ÔÈκθÐÐËȤµÄÂѰ×ÖÊ×÷³ö·´Ó¦¡£¡±ÈÏÕæ¸ÃÏîÑо¿µÄ¼ÓÀû¸£ÄáÑÇ˹̹¸£´óѧÉúÎ﹤³Ìʦ¿ËÀï˹µÙÄÈ¡¤Ë¹Äª¿Ë˵£¬ÆäÖ÷ÒªÄѵãÔÚÓÚÔõÑù¿ØÖÆÏ¸°ûÐÐΪ£¬ÒÔ¼°ÔõÑù¿ª·¢Ï¸°û·¾¶¡£
¡¡¡¡Îª´Ë£¬Ñо¿Ð¡×éÖÆÔìÁËÒ»¶ÎDNA£¨ÍÑÑõºËÌǺËËᣩ×÷Ϊ»ùÒòÏß·£¬½«Æä²åÈëϸ°ûת¼µ½RNA£¨ºËÌǺËËᣩÖкó£¬Ëü»áȥ̽Ѱϸ°ûÄÚ²¿ÊÇ·ñ±£´æÄ³ÖÖÌØÊâµÄÄ¿µÄÂѰ×ÖÊ£¬Ò»µ©ÕÒµ½£¬Ïß·¾Í»á¸øÕâÖÖÂѰ×ÖʱàÂë¡£ºÃ±È£¬ÆäÖÐÒ»ÖÖÏß·°üÀ¨ÁËÒ»ÖÖøµÄ»ùÒò£¬ÕâÖÖøÄÜÈÃϸ°û¶Ô¿¹²¡¶¾Ò©Îï¸üÎôÂåΤ£¨ganciclovir£©Ô½·¢Ãô¸Ð¡£Ñо¿Ö°Ô±ÔÚ»ùÒòÐòÁÐÖвåÈëÒ»¸ö×èÖ¹ÐźÅ£¬ÒÔ±ÜÃâϸ°ûͨ¹ýÐÅʹRNAÌìÉúÊÂÇéÂѰ×ÖÊ£¬¶øµ½ÏÂÒ»¸ö×èÖ¹ÐźÅʱ£¬ËüÃÇ»á±àÂëһС¶ÎRNA×÷Ϊһ¸öÊÊÅä×Ó£¬Ê¶±ðÒ»ÖÖ½Ð×öbeta-ÁªÂѰ׵ÄÐźÅÂѰ×ÖÊ£¨ÔÚijЩÖ×ÁöÖÐbeta-ÁªÂѰ׻ᱻ̫¹ý¸´ÖÆ£©£¬ÕÒµ½Ä¿µÄºóÊÊÅä×ӾͻáÓëÆä͎ᣬÓÉ´Ë»áÈÃϸ°ûÓëÐÅʹDNAÒÔijÖÖ·½·¨½Â½Ó£¬´Ó¶øÉ¨³ý×èÖ¹ÐźÅÒÔ±¬·¢Ã¸¡£ÎªÁËÄ¥Á·Éè¼ÆÏß·µÄЧ¹û£¬ËûÃǼ¤»îÈËÌåϸ°û±¬·¢ÌØÁíÍâbeta-ÁªÂѰ×£¬ÈÃËüÃDZäµÃÏñ°©Ï¸°û£¬È»ºóÓøüÎôÂåΤÀ´ÖÎÁÆ£¬Ð§¹ûÏÔʾ£¬º¬ÓÐÌåÀýÏß·µÄϸ°û¶¼±»Ò©ÎïɱËÀÁË¡£
¡¡¡¡Ë¹Äª¿Ë˵£¬Ò»ÌõÏß·ÀïÓжà¸öÊÊÅä×Ó¸ÐÊÜÆ÷£¬ÄܶԲî±ðÀàÐ͵ÄÂѰ×ÖÊÆð²î±ðµÄ·´Ó¦¡£´ÓÀíÂÛÉÏ£¬ÕâÖÖÏß·ÄܰüÀ¨ÈκλùÒò£¬Ò²¿ÉÒÔÉè¼ÆÊÊÅä×ÓÀ´Ê¶±ðÈκÎÂѰ×ÖÊ¡£Í¨¹ýŤתÕâÖÖÏß·ÀïµÄ¡°Ïß¡±£¬ÄÜÈÃϸ°û²»µ«¶Ô±£´æµÄÂѰ×Öʱ¬·¢ÏìÓ¦£¬»¹ÄܶÔȱʧµÄÂѰ×Öʱ¬·¢ÏìÓ¦¡£¼ÓÀû¸£ÄáÑÇÀÍÂ×˹¡¤²®¿ËÀû¹ú¼ÒʵÑéÊÒµÄϵͳÓëºÏ³ÉÉúÎïѧ¼ÒÑǵ±¡¤°¢½ð˵£¬ÐÂÊÖÒÕÔÚÎÞаÐÔÉÏÊÇÒ»ÖÖÍ»ÆÆ¡£ÔÚʹÓÃϸ°ûÐźŷ½Ã棬ÆäËûÑо¿ÇãÏòÓÚ×÷ΪһÖÖ¡°Ò»´ÎÐÔµÄÔ¤É蹤³Ì¡±£¨one-offs of bespoke engineering£©£¬¶øË¹Äª¿ËµÄÏß·¿ÉÒÔÓÃÔÚ²î±ðÀàÐ͵Äϸ°ûÖУ¬¿ª·¢¸üΪÆÕ±éµÄÉúÎï·¾¶¡£Ë¹Äª¿ËÒÔΪ£¬ÕâÖÖ¡°Ï¸°ûºÚ¿Í¡±Ïß·£¨Cell-hacking circuit£©Òª½øÈëÁÙ´²Ó¦Óû¹ÐèÔٵȼ¸Ä꣬µ«ÓëÆäËûʵÑéÐÔÖÎÁÆÏà͎ᣬËûÃÇ×îÖÕ½«Äܹ»¿ØÖÆÆäÔÚÌåÄÚʩչ×÷ÓÃʱµÄλÖúÍʱ»ú¡£ºÃ±È£¬Í¨¹ýָʾ¶à¹¦Ð§¸Éϸ°û¶ÔÌåÄÚµÄÂѰ×ÖÊ×Ù¼£Ðźű¬·¢ÏìÓ¦£¬ÈÃËüÃÇÉú³ö¶àÖÖ×éÖ¯£¬·Ö½â³ÉÏ£ÍûµÄÑù×Ó£»»òÈú¬ÓÐÌØ¶¨Ïß·µÄɱ°©ÃâÒßϸ°ûÄÜÃâÊÜ¿µ½¡Ï¸°ûµÄ¹¥»÷¡£ÈªÔ´£º¿Æ¼¼ÈÕ±¨ Ðû²¼Ê±¼ä£º2010-11-27 9:40:28

¡¾µãÆÀ¡¿
¡¡¡¡¶Ôϸ°ûµÄÐÐΪºÍ¾öÒé¾ÙÐпØÖÆ£¬ÕâÊÇÏÔ×ŵÄÈËΪ¸ÉÔ¤ÍýÏ룬ÈôÊÇÎÞ·¨È·±£ÕâÖÖ¸ÉÔ¤Ö»ÊÇ·ºÆðÔÚ׼ȷµÄʱ¼ä¡¢ËùÔÚºÍÊÂÎñÉÏ£¬ÄÇôËüµÄ±£´æÖ»»áÈÅÂÒϸ°ûÕý³£µÄÐÄÀí´úл¡£

¡¾Ô­ÎÄժ¼¡¿Science 2010: Vol. 330 no. 6008 pp. 1251-1255 DOI: 10.1126/science.1192128
Reprogramming Cellular Behavior with RNA Controllers Responsive to Endogenous Proteins
Stephanie J. Culler1, Kevin G. Hoff1 and Christina D. Smolke
Synthetic genetic devices that interface with native cellular pathways can be used to change natural networks to implement new forms of control and behavior. The engineering of gene networks has been limited by an inability to interface with native components. We describe a class of RNA control devices that overcome these limitations by coupling increased abundance of particular proteins to targeted gene expression events through the regulation of alternative RNA splicing. We engineered RNA devices that detect signaling through the nuclear factor ¦ÊB and Wnt signaling pathways in human cells and rewire these pathways to produce new behaviors, thereby linking disease markers to noninvasive sensing and reprogrammed cellular fates. Our work provides a genetic platform that can build programmable sensing-actuation devices enabling autonomous control over cellular behavior.

4. ÎÞÐ趯ÎïʵÑé¼´¿É¿ìËÙɸѡ¿¹°©Ò©Îï

¡¾ÕªÒª¡¿¿Æ¼¼ÈÕ±¨ 2010-11-23 10:15:12
¡¡¡¡ÃÀ¹ú˹̹¸£´óѧҽѧԺÊ×´ÎÀֳɵØÔÚ×éÖ¯×÷ÓýÃóÖн«ÈËÌåÕý³£Ï¸°ûתÄð³ÉÈýά°©Ï¸°û×éÖ¯¡£¸ÃÑо¿Ð§¹ûÌṩÁËÊÓ²ìϸ°ûÔõÑùÆÆËéºÍÇÖÈëÖÜΧ×éÖ¯µÄÈ«ÐÂ;¾¶£¬ÓÐÖúÓÚ¸üºÃµØÊìϤ°©Ö¢ÔÚÈËÌåÄÚµÄÐÐΪ£¬Í¬Ê±¿ÉÍûÔÚÎÞÐ趯ÎïʵÑéµÄÇéÐÎϾÙÐпìËÙºÍÁ®¼ÛµÄ¿¹°©Ò©Îï²âÊÔ¡£Ñо¿Ð§¹û½ÒÏþÔÚ21ÈÕ³öÊéµÄ¡¶×ÔÈ»¡¤Ò½Ñ§¡·ÔÓÖ¾ÍøÂç°æÉÏ¡£
¡¡¡¡Ë¹Ì¹¸£´óѧҽѧԺƤ·ô¿ÆÖ÷Èα£ÂÞ¡¤¿¨ÍßÀﲩʿÌåÏÖ£¬Ê¹Óö¯Îïģʽ£¬ÉÏÊöʵÑéͨ³£ÐèÒªÊýÔµÄʱ¼ä²Å»ªÍê³É£¬¶øÏÖÔÚÖ»ÐèÊýÌì¡£¾ÝϤ£¬Ñо¿Ö°Ô±µÄÑо¿ÖصãÊÇÉÏÆ¤Ï¸°û£¬¶øÉÏÆ¤Ï¸°û°©Ö¢Ô¼ÄªÕ¼ÈËÀà°©Ö¢·¢²¡ÂʵÄ90%¡£Ñо¿Ö°Ô±Ê¹ÓõÄÈËÌåÕý³£Ï¸°ûÈ¡×ÔÆ¤·ô¡¢¹¬¾±¡¢Ê³µÀºÍÑʺí¡£ÎªÈÃÕý³£Ï¸°û±¬·¢°©±ä£¬ËûÃÇÊ×ÏÈÓò¡¶¾È¥Ó°Ïì¿Éµ¼ÖÂϸ°ûʧ¿ØÉú³¤µÄÁ½¸öÒÑÖª»ùÒòͨµÀ£¬²¢·¢Ã÷ͬʱ¸ü¸ÄÕâÁ½¸ö»ùÒòͨµÀÊÇÁîÕý³£Ï¸°ûת»¯µÄÓÐÓÃ;¾¶¡£È»ºó£¬Ñо¿Ö°Ô±½«·ºÔçÏÈÆÚ°©±äµÄÉÏÆ¤Ï¸°ûÖ²Èë×°ÓÐÈËÌåÆäËûƤ·ôÒòËØµÄ×éÖ¯×÷ÓýÃóÖС£ÊÓ²ìЧ¹ûÏÔʾ£¬ÉÏÆ¤Ï¸°ûÊ×Ïȸ½×ÅÔÚ×÷ÓýÃóÄڵĻùĤÉÏ£¬²¢ÐγÉÁË¿´ÉÏÈ¥ÊÇÕý³£µÄÈýάºá½ØÃæÆ¤·ô£»È»¶øÔÚԼĪ6Ììºó£¬Ï¸°û×îÏÈ·ºÆðÐ×Õ×ÐÔת±ä£¬ËüÃÇ´©Í¸ÁË»ùĤ£¬²¢ÇÖÈëÏÂÃæµÄ»ùÖÊ×éÖ¯ÖС £¿¨ÍßÀï˵£º¡°Õâ·´Ó¦µÄÊÇÈËÌåÖ×ÁöËù±¬·¢µÄ×ÔÈ»Õ÷Ïó¡£Í¨³££¬Ï¸°û´ÓÔçÆÚ¶ñÐÔ״̬±äΪÇÖÈëÐÔ°©Ö¢ÐèÒªÊýÄêµÄʱ¼ä¡£Ö»ÓÐÔÚÕâÖÖÍêºÃµÄÈËÌå×é֯ģ×ÓÇéÐÎÏ£¬Ï¸°ûת±ä²Å»áÉú³¤µÃ¸ü¿ì¡£¡±±ðµÄ£¬ÔÚ¶Ô×÷Óý³öµÄ°©Ö¢Ï¸°û¾ÙÐÐÆÊÎöºó£¬Ñо¿Ö°Ô±·¢Ã÷ÆäÐÎ×´ÓëÈËÌåÄÚ×ÔÈ»Éú³¤µÄ°©Ï¸°ûÏà·û¡£Ê¹ÓÃпª·¢µÄ°©Ï¸°û×éÖ¯×÷ÓýÃó£¬Ñо¿Ö°Ô±¶Ô20ÖÖʵÑéÐÔ¿¹°©Ò©Îï¾ÙÐÐÁ˲âÊÔ£¬²¢×·×Ùµ½3ÖÖʵÑéÒ©ÎïÄܹ»ÈÃÉÏÆ¤Ï¸°û×èÖ¹ÇÖÈë»ùĤ£¬ÏÔʾ³öËüÃǿɳÉΪDZÔڵĺòѡҩÎï¡£ËäÈ»ºòѡҩÎïÄÜ·ñ×îÖÕ¿ª·¢³É¿¹°©Ò©ÎﻹÐèÒª¾ÙÐÐÓÅ»¯ºóÓÃÓÚ¶¯ÎïʵÑ飬¿ÉÊÇʹÓð©Ï¸°û×éÖ¯×÷ÓýÃó¾ÙÐÐÏÈÆÚɸѡµÄÊֶοÉÒÔÈÃÑо¿Ö°Ô±ËõСѡÔñ¹æÄ£¡£ÒªÇ¿µ÷µÄÊÇ£¬ÉÏÊö20ÖÖ¿¹°©Ò©ÎïÖдó´ó¶¼×Ô¼º²»Ò×ÔÚ¶¯ÎïÌå¾ÙÐвâÊÔ£¬ÆäÔµ¹ÊÔ­ÓÉÔÚÓÚ£¬ÒÔËüÃÇÏÖÔÚµÄÐÎ̬»¹±£´æÄÑÒÔ¹ÜÀíºÍ¶¾ÐÔµÈÎÊÌâ¡£
¡¡¡¡Èýά°©Ï¸°û×÷ÓýÇéÐλ¹ÏÔʾ£¬»ùÖÊϸ°û×Ô¼ºÒÔijÖÖ·½·¨Ôö½øÁ˰©±äÉÏÆ¤Ï¸°ûµÄÇÖÈ룬ÕâЩϸ°û²¢²»ÐèÒª¼±¾çÆÆËé¶øµÖ´ïÇÖÈë»ùĤµÄÄ¿µÄ¡ £¿¨ÍßÀïÌåÏÖ£¬ËûÃÇÏÖÔÚÄܹ»´Ó²î±ðµÄÈËÌå×éÖ¯×÷Óý³ö¶àÖÖÖ×Áö£¬»ñµÃÁË¿ÉÄÜ·´Ó¦ÈËÌåÖ×Áö×ÔÈ»±¬·¢Õ÷ÏóµÄÐÂ;¾¶¡£È»¶øËûͬʱָ³ö£¬ÐµÄÑо¿Ä£Ê½Ã»ÓаüÀ¨ÈËÌåÆäËûµÄÉúÎïÒòËØ£¬ÈçÃâÒßϵͳºÍг´úл¡£

¡¾µãÆÀ¡¿
¡¡¡¡Ê¹ÓÃÕâÒ»È˹¤°©±äÄ£×Ó£¬ÔÚ×éÖ¯×÷ÓýÃóÖоÙÐÐÏÈÆÚɸѡ£¬¼òÖ±¿ÉÒÔËõСÄÇЩ²»Ò×´¦Öóͷ£µÄºòѡҩÎïµÄ¹æÄ££¬Ö»Êǿɿ¿ÐÔÉÐÓдýÑéÖ¤¡£ÁíÒ»·½Ã棬ÏÖÔڵĿÆÑ§¹ØÓÚ½«Õý³£Ï¸°ûÄð³É°©Ï¸°ûÊÇÔ½À´Ô½Óв½·¥ÁË£¬¿ÉÊǹØÓÚÔõÑù½«°©Ï¸°ûÄð³ÉÕý³£Ï¸°ûÕÕ¾ÉÒ»³ïĪչ¡£

¡¾Ô­ÎÄժ¼¡¿Nature Medicine (21 November 2010) doi:10.1038/nm.2265
Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia
Todd W Ridky, Jennifer M Chow, David J Wong, Paul A Khavari
Refined cancer models are required if researchers are to assess the burgeoning number of potential targets for cancer therapeutics in a clinically relevant context that allows a fast turnaround. Here we use tumor-associated genetic pathways to transform primary human epithelial cells from the epidermis, oropharynx, esophagus and cervix into genetically defined tumors in a human three-dimensional (3D) tissue environment that incorporates cell-populated stroma and intact basement membrane. These engineered organotypic tissues recapitulated natural features of tumor progression, including epithelial invasion through basement membrane, a complex process that is necessary for biological malignancy in 90% of human cancers. Invasion was rapid and was potentiated by stromal cells. Oncogenic signals in 3D tissue, but not 2D culture, resembled gene expression profiles from spontaneous human cancers. We screened 3D organotypic neoplasia with well-characterized signaling pathway inhibitors to distill a clinically faithful cancer gene signature. Multitissue 3D human tissue cancer models may provide an efficient and relevant complement to current approaches to characterizing cancer progression.

5. »Ö¸´p53¹¦Ð§ÎªÖ÷µÄÖ×ÁöÁÆ·¨µÄ¾ÖÏÞÐÔ

¡¾ÕªÒª¡¿Nature 2010-11-25 17:37:09
¡¡¡¡p53 Ö×ÁöÒÖÖÆÍ¨µÀµÄʧ»îÊÇÈËÀà°©Ö¢µÄÒ»¸öÆÕ±éÌØÕ÷£¬ÒÔÊÇÈËÃDZãÏ룬»Ö¸´ÒÑÐγɵÄÖ×ÁöÖеÄp53 ¹¦Ð§Ò²Ðí»áÊÇÒ»ÖÖÓÐÓÃÁÆ·¨¡£È»¶ø£¬±¾ÆÚNatureÉÏÁ½ÆªÂÛÎÄÍ»ÏÔÁËÒÔp53ΪƫÏòµÄ°©Ö¢ÁÆ·¨ÔÚʵ¼ùÉϵľÖÏÞÐÔ¡£ËûÃÇÔÚÒ»¸öK-Ras-driven·Î°©Ä£×ÓÖз¢Ã÷£¬ÓÉp53µ÷¿ØµÄÖ×ÁöÒÖÖÆÖ»ÔÚÖ×ÁöÉú³¤µÄºóÆÚ½×¶Î²Åʩչ×÷Óã¬Õâ¸öʱ¼äK-RasÖ°©ÐźÅÒѵִï×ãÒÔ¼¤»îARF-p53ͨµÀµÄãÐÏÞ¡£ÕâÒâζ×Åp53µÄÖØÐ±í´ïδÄÜÒÖÖÆÖ×Áö±¬·¢µÄÔçÆÚ½×¶Î£¬Ö»¹ÜËü¼òÖ±ÓÕµ¼Á˸üΪ¼¤½øµÄÖ×ÁöµÄÍËÐС£

¡¾µãÆÀ¡¿
¡¡¡¡p53µÄÖØÐ±í´ï²»¿ÉÒÖÖÆÔçÆÚÖ×ÁöµÄ±¬·¢£¬°©±äµÄ±¬·¢ÊǶàÒòËØÊÂÎñ£¬ÔÚϸ°ûÔ˶¯µÄÕûÌåÍøÂçÀ¼òµ¥ÒòËØÖ»ÄÜÆðµ½²¿·Ö×÷Óã¬ËüÒÀÈ»ÊÜÆäËûÒòËØÓ°Ïì¡£

¡¾Ô­ÎÄժ¼¡¿Nature 468, 567-571 (24 November 2010) doi:10.1038/nature09526
Selective activation of p53-mediated tumour suppression in high-grade tumours
Melissa R. Junttila, Anthony N. Karnezis, Daniel Garcia, et al.
Non-small cell lung carcinoma (NSCLC) is the leading cause of cancer-related death worldwide, with an overall 5-year survival rate of only 10¨C15%. Deregulation of the Ras pathway is a frequent hallmark of NSCLC, often through mutations that directly activate Kras. p53 is also frequently inactivated in NSCLC and, because oncogenic Ras can be a potent trigger of p53, it seems likely that oncogenic Ras signalling has a major and persistent role in driving the selection against p53. Hence, pharmacological restoration of p53 is an appealing therapeutic strategy for treating this disease. Here we model the probable therapeutic impact of p53 restoration in a spontaneously evolving mouse model of NSCLC initiated by sporadic oncogenic activation of endogenous Kras. Surprisingly, p53 restoration failed to induce significant regression of established tumours, although it did result in a significant decrease in the relative proportion of high-grade tumours. This is due to selective activation of p53 only in the more aggressive tumour cells within each tumour. Such selective activation of p53 correlates with marked upregulation in Ras signal intensity and induction of the oncogenic signalling sensor p19ARF. Our data indicate that p53-mediated tumour suppression is triggered only when oncogenic Ras signal flux exceeds a critical threshold. Importantly, the failure of low-level oncogenic Kras to engage p53 reveals inherent limits in the capacity of p53 to restrain early tumour evolution and in the efficacy of therapeutic p53 restoration to eradicate cancers.

6. ÂѰ×øÌåÖúÉúֳϸ°û¡°·µÀÏ»¹Í¯¡±
¡¾ÕªÒª¡¿
¡¡¡¡¡°·µÀÏ»¹Í¯¡±ÔÚ×ÔÈ»½çÕæµÄ±£´æÂ𠣿·¨¹úÀï°ºµÄ¿ÆÑ§¼ÒÔÚÏß³æÉúÖ³Àú³ÌÖÐÊ״η¢Ã÷ÂÑĸϸ°ûÔÚÊܾ«Ç°µÄijһ¿Ì¡°·µÀÏ»¹Í¯¡±¡£Ê×ÏÈ£¬ËûÃÇ·¢Ã÷Éúֳϸ°ûÒ²»á±äÀÏ£¬»ýÀÛôÊ»ù»¯ºÍÑõ»¯µÄËðÉËÂѰ×£¬¸üÖ÷ÒªµÄÊÇ£¬ËûÃÇÊӲ쵽ÔÚÂÑĸϸ°û³ÉÊìµÄijһ׼ȷʱ¿Ì£¬ÂѰ×Ñõ»¯Ë®Æ½»áͻȻ½µµÍ£¬ÕâÊÇÓÉÓÚÂѰ×øÌå¶ÔËðÉËÂѰ׾ÙÐÐÁË¡°Ï´åª¡±£¬Ê¹Æä¡°·µÀÏ»¹Í¯¡±¡£

¡¾µãÆÀ¡¿
¡¡¡¡Éúֳϸ°ûµÄ¡°·µÀÏ»¹Í¯¡±×èÖ¹½«ÀÏ»¯ÐÅÏ¢ÒÅ´«ÏÂÈ¥£¬¶øÕâÖÖ»úÖÆÈôÊÇÒ²±£´æÓÚ×é֯ϸ°ûÀ²¢ÇÒÄܹ»±»¼¤»î£¬ÄÇôҲÓпÉÄÜʵÏÖ³ÉÊì¸öÌåµÄÄêÇữ¡£

¡¾Ô­ÎÄժ¼¡¿Aging Cell, 2010; 9 (6): 991 DOI: 10.1111/j.1474-9726.2010.00625.x
Carbonylated proteins are eliminated during reproduction in C. elegans.
J¨¦rôme Goudeau, Hugo Aguilaniu.
Oxidatively damaged proteins accumulate with age in many species. This means that damage must be reset at the time of reproduction. To visualize this resetting in the roundworm Caenorhabditis elegans, a novel immunofluorescence technique that allows the detection of carbonylated proteins in situ was developed. The application of this technique revealed that carbonylated proteins are eliminated during C. elegans reproduction. This purging occurs abruptly within the germline at the time of oocyte maturation. Surprisingly, the germline was markedly more oxidized than the surrounding somatic tissues. Because distinct mechanisms have been proposed to explain damage elimination in yeast and mice, possible common mechanisms between worms and one of these systems were tested. The results show that, unlike in yeast, the elimination of carbonylated proteins in worms does not require the presence of the longevity-ensuring gene, SIR-2.1. However, similar to findings in mice, proteasome activity in the germline is required for the resetting of carbonylated proteins during reproduction in C. elegans. Thus, oxidatively damaged proteins are eliminated during reproduction in worms through the proteasome. This finding suggests that the resetting of damaged proteins during reproduction is conserved, therefore validating the use of C. elegans as a model to study the molecular basis of damage elimination.
 

ÍøÕ¾µØÍ¼