ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨¶þÊ®¶þ£©
£¨08.30 --09.05/ 2010£©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úÐÂ
¡¡¡¡±¾Öܶ¯Ì¬°üÀ¨ÒÔÏÂÄÚÈÝ£º Ö¬·¾¿ÉÓÃ×÷ϸ°ûÄÚÔÚ pH ¸ÐÊÜÆ÷£» ÓãÓÍ¿¹Ñ׿¹ÌÇÄò²¡µÄ»úÀí£»·¢Ã÷ÉÏÆ¤×éÖ¯ÖÐÉñÃØÃâÒßϸ°ûµÄ¹¦Ð§ºÍ»úÀí£» ÂѰ×ÖÊ TIMP3 Ôö½øÔìѪ¸Éϸ°ûÆÆË飻 ÖвÝÒ©ÌáÈ¡Îï ´ó»ÆËØ ¸ÄÉÆÌÇÄò²¡ºÍÒȵºËضԿ¹µÄ»úÀí£» ¹²Éú¾úȺʧµ÷»òµ¼Ö´úлÐÔ¼²²¡¡£
• Ö¬·¾¿ÉÓÃ×÷ϸ°ûÄÚÔÚ pH ¸ÐÊÜÆ÷
¡¾ÕªÒª¡¿ ȪԴ£º¡¶¿ÆÑ§¡· Ðû²¼Ê±¼ä£º 2010-8-30 16:44:36
¡¡¡¡Ó¢¹ú¸çÂ×±ÈÑÇ´óѧ£¨ UBC £©µÄÒ»¸öÑо¿Ð¡×é·¢Ã÷ϸ°ûĤÉϱ£´æµÄÒ»ÖÖÌØÒìµÄÖ¬·¾¿É×÷ΪһÖÖϸ°û pH ¸ÐÊÜÆ÷¡£¸ÃÑо¿Ð§¹û±»½ÒÏþÔÚ¡¶¿ÆÑ§¡·£¨ Science £©ÔÓÖ¾ÉÏ¡£ pH ÖµÊǶÔËá¶È»ò¼î¶ÈµÄÒ»ÖÖÕÉÁ¿Öµ¡£Ï¸°ûÐèҪά³Ö pH ÎȹÌÒÔ°ü¹ÜÉíÌåÕý³£µÄϸ°û¹¦Ð§¡£È»¶øÏ¸°û pH ¼àÊÓÆ÷µÄ»úÖÆÈ´²»ÇåÎú¡£¡°¿ÆÑ§¼ÒÃÇ·¢Ã÷Ò»Ð©ÌØÒìµÄÂѰ׿ÉÒÔ¼ì²âijЩÇéÐÎÏ pH ÖµµÄ¸Ä±ä£¬¡±Ó¢¹ú¸çÂ×±ÈÑÇ´óѧҽѧԺϸ°û¼°ÐÄÀíѧ¿ÆÏµµÄ¸±½ÌÊÚ¡¢ÉúÃü¿ÆÑ§Ñо¿ËùµÄ³ÉÔ± Chris Loewen ˵£º¡°ÎÒÃÇ·¢Ã÷Ò»ÖÖ±£´æÓÚËùÓÐϸ°ûÖгÆÎªÁ×Ö¬ËáµÄÌØÒìÐÔÁ×Ö¬£¬Äܹ»¼ì²âϸ°ûÖÐ pH ÖµµÄת±ä¡£¡±¡°Ê¹ÓÃÄð¾Æ½Íĸ×÷Ϊģ×Ó£¬ÎÒÃÇ·¢Ã÷µ±±»°þ¶áÓªÑøËØÊ±£¬Ï¸°ûµÄ pH ֵϽµ¿ÉÓ°ÏìÁ×Ö¬ËáµÄ»¯Ñ§×´Ì¬£¬´Ó¶ø¸Ä±ä»ùÒò±í´ïºÍϸ°ûг´úл¡£¡±Ó¢¹ú¸çÂ×±ÈÑÇ´óѧºÍÎÂ¸ç»ªÑØ°¶ÎÀÉúÑо¿ËùµÄ³ÉÔ± Loewen ˵¡£
¡¡¡¡Ðµķ¢Ã÷¾ßÓкÜÊÇÖ÷ÒªµÄÒâÒ壬ËüÓÐÖúÓÚÑо¿ÕßÏàʶÈËÀàг´úлºÍ¼²²¡£¬ÓÉÓÚËùÓÐÉúÎïÌåµÄÖ¬Àà½á¹¹ºÍ¹¦Ð§¶¼ÊǺÜÊÇÏàËÆµÄ¡£¿É½«ÆäÔËÓõ½ÆäËûÁìÓò¾ÙÐиüÉîµÄ̽ÌÖ£¬ÀýÈçÖ×Áö±¬·¢¡ª¡ªÓÉÓÚÁ×Ö¬ËáºÍ pH ÖµÔÚÕâÒ»Àú³ÌÖÐʩչÁ˺ÜÊÇÖ÷ÒªµÄ×÷Óá£Òà¿ÉÓ¦Óõ½´óÄÔÑо¿£¬ÄÔϸ°û pH ÖµµÄ¶¯Ì¬¸Ä±äÅú×¢ËûÃÇҲʹÓÃÁË pH ¸ÐÊÜÆ÷¡£
¡¾µãÆÀ¡¿
¡¡¡¡·¢Ã÷Á×Ö¬Ëá¿ÉÒÔ¼ì²âϸ°ûÄÚ pH ÖµµÄת±ä²¢µ÷ÀíÓëЧӦÂѰ׵ÄÍŽᣬ´Ó¶øµ÷Àí»úÌåÐÄÀíÔ˶¯¡£¼øÓÚ pH ÖµµÄÎȹ̶ÔÉúÎïÌåÉúÑĵÄÖ÷ÒªÒâÒ壬×÷Ϊϸ°ûÄÚ pH Öµ¸ÐÊÜÆ÷µÄ¹¦Ð§»á¼«´óµØÌá¸ßÁ×Ö¬ËáÕâÀàÖ¬ÖÊÔÚÉúÎïÌåÖеÄÖ÷ÒªÐÔ¡£
¡¾ÔÎÄժ¼¡¿ Science Vol. 329. no. 5995, pp. 1085 ¨C 1088, DOI: 10.1126/science.1191026
Phosphatidic Acid Is a pH Biosensor That Links Membrane Biogenesis to Metabolism
Barry P. Young, John J. H. Shin, Rick Orij, et al.
Recognition of lipids by proteins is important for their targeting and activation in many signaling pathways, but the mechanisms that regulate such interactions are largely unknown. Here, we found that binding of proteins to the ubiquitous signaling lipid phosphatidic acid (PA) depended on intracellular pH and the protonation state of its phosphate head group. In yeast, a rapid decrease in intracellular pH in response to glucose starvation regulated binding of PA to a transcription factor, Opi1, that coordinately repressed phospholipid metabolic genes. This enabled coupling of membrane biogenesis to nutrient availability.
• ÓãÓÍ¿¹Ñ׿¹ÌÇÄò²¡µÄ»úÀí
¡¾ÕªÒª¡¿
¡¡¡¡¦Ø-3 Ö¬·¾Ëá¾ßÓп¹Ñ××÷Ó㬵«»úÀíÒ»Ö±²»ÇåÎú¡£ÃÀ¹ú¼ÓÖÝ´óѧµÄÑо¿Ö°Ô±×î½ü·¢Ã÷ G ÂѰ׿ÁªÊÜÌå GPR120 ÊÇ ¦Ø-3 Ö¬·¾ËáµÄÊÜÌå / ¸ÐÊÜÆ÷£¬ÌåÍâϸ°ûÊÔÑéÏÔʾ GPR120 Êܵ½ ¦Ø-3 Ö¬·¾Ëá»ò»¯Ñ§¼¤¶¯¼ÁµÄ´Ì¼¤»á±¬·¢ÆÕ±éµÄ¿¹Ñ××÷Ó㬶øÇóý GPR120 »áʹËùÓÐÕâЩ×÷ÓÃÏûÊÅ¡£·ÊÅÖÖ¢ÒȵºËØ¿¹ÐÔµÄÒ»¸öÒªº¦»úÀíÊǾÞÊÉϸ°û½éµ¼µÄÂýÐÔ×éÖ¯·¢Ñס£Í¨¹ýιʳҰÉúÐͺÍÇóý GPR120 µÄ·ÊÅÖСÊóÌí¼Ó»ò²»Ìí¼Ó ¦Ø-3 Ö¬·¾ËáµÄ¸ßÖ¬·¾Òûʳ£¬·¢Ã÷¸øÒ°ÉúÐÍСÊóÌí¼Ó ¦Ø-3 Ö¬·¾Ëá¿ÉÒÔÒÖÖÆ·¢Ñײ¢ÔöǿȫÉíÒȵºËØÃô¸ÐÐÔ£¬¶øÔÚÇóý GPR120 µÄСÊóÔòÎÞ´ËЧ¹û¡£Òò´Ë£¬ ¦Ø-3 Ö¬·¾Ëáͨ¹ý¼¤»î GPR120 ÊÜÌå¼°Æä½éµ¼µÄÒÖÖÆ¾ÞÊÉϸ°û½éµ¼µÄÂýÐÔ×éÖ¯·¢Ñ×µÄ×÷ÓöøÊ©Õ¹ÌåÄÚÔöÇ¿ÒȵºËØÃô¸ÐÐÔ¿¹ÌÇÄò²¡µÄ×÷Óá£
¡¾µãÆÀ¡¿
¡¡¡¡ÓãÓÍ£¬ÓÈÆäÊÇÆä¸»º¬µÄ ¦Ø-3 Ö¬·¾ËáµÄ±£½¡×÷ÓõĻúÀíÒ»Ö²»Ì«ÇåÎú£¬±¾ÎĵÄÑо¿Ð§¹ûÔÚϸ°ûºÍ¶¯ÎïʵÑé²ãÃæÉÏÚ¹ÊÍÁË ¦Ø-3 Ö¬·¾ËáµÄ¿¹Ñ׺Ϳ¹ÌÇÄò²¡×÷ÓûúÀí£¬ÈôÊÇͬÑùµÄЧ¹û¿ÉÒÔÔÚÁÙ´²ÊÔÑéÖÐÖØÏÖ£¬ÄǹØÓÚÌÇÄò²¡ºÍÏà¹ØÑ×Ö¢¿ÉÄÜ»áÌṩһÖÖ¼òÆÓµÄʳÁƼƻ®¡£
¡¾ÔÎÄժ¼¡¿ Cell , 2010; 142 (5): 687-698 DOI: 10.1016/j.cell.2010.07.041
GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-inflammatory and Insulin-Sensitizing Effects .
Da Young Oh, Saswata Talukdar, Eun Ju Bae, et al.
Omega-3 fatty acids (¦Ø-3 FAs), DHA and EPA, exert anti-inflammatory effects, but the mechanisms are poorly understood. Here, we show that the G protein-coupled receptor 120 (GPR120) functions as an ¦Ø-3 FA receptor/sensor. Stimulation of GPR120 with ¦Ø-3 FAs or a chemical agonist causes broad anti-inflammatory effects in monocytic RAW 264.7 cells and in primary intraperitoneal macrophages. All of these effects are abrogated by GPR120 knockdown. Since chronic macrophage-mediated tissue inflammation is a key mechanism for insulin resistance in obesity, we fed obese WT and GPR120 knockout mice a high-fat diet with or without ¦Ø-3 FA supplementation. The ¦Ø-3 FA treatment inhibited inflammation and enhanced systemic insulin sensitivity in WT mice, but was without effect in GPR120 knockout mice. In conclusion, GPR120 is a functional ¦Ø-3 FA receptor/sensor and mediates potent insulin sensitizing and antidiabetic effects in vivo by repressing macrophage-induced tissue inflammation.
• ·¢Ã÷ÉÏÆ¤×éÖ¯ÖÐÉñÃØÃâÒßϸ°ûµÄ¹¦Ð§ºÍ»úÀí
¡¡¡¡¡¾ÕªÒª¡¿ 9 Ô 3 ºÅµÄ Science ÔÓÖ¾½ÒÏþÁË Scripps Research Institute ÍŶӵÄÏà¹ØÑо¿£¬ÆÊÎöÁËÆ¤·ôºÍÆäËûÉÏÆ¤×éÖ¯ÖеÄÒ»ÖÖÃâÒßϸ°û ¦Ã¦Ä T ϸ°ûµÄ¼¤»î»úÀí¡£ÕâЩÃâÒßϸ°ûÔÚʶ±ðÉÏÆ¤×éÖ¯µÄËðÉ˺Ͳ¡±äÖÐÆðÆæÒì¶øÒªº¦µÄ×÷Óá£×Ô¾õÏÖ ¦Ã¦Ä T ϸ°û½üÈýÊ®ÄêÀ´£¬¶ÔÆä¼¤»î»úÀíÒ»Ö±ÖªÖ®ÉõÉÙ¡£¿ÆÑ§¼Ò·¢Ã÷ÕâÀàϸ°û·ºÆðÓÚÅßÌ¥·¢ÓýÔçÆÚµÄÐØÏÙÖУ¬´ËºóǨáãµ½ÉÏÆ¤×éÖ¯ÖС£ÓëÃâÒßϵͳµÄ ¦Á¦ÂT ϸ°û²î±ð£¬´ó²¿·Ö ¦Ã¦Ä T ϸ°û²»ÔÚѪÁ÷ÖÐÑ»·£¬¶øÊÇ×÷ΪƤ·ô¡¢·ÎºÍ³¦µÄÒ»ÖÖÖ÷ÒªµÄ T ϸ°û¼ÙÔ¢ÔÚÄÇÀï²¢¼àÊÓÁÚ½üÉÏÆ¤Ï¸°ûµÄËðÉ˺Ͳ¡±ä¡£¶ø Havran Ïòµ¼µÄÑо¿·¢Ã÷ ¦Ã¦Ä T ϸ°ûÄܼÓËÙÉË¿ÚÓúºÏ£¬ ¸ú½øµÄÑо¿Ö¤Êµ×÷ΪÉÏÆ¤ÖÐÖ÷Ҫϸ°ûÀàÐ͵ĽÇÖÊϸ°û¸Ð֪Ƥ·ôËðÉ˲¢±í´ïÒ»ÖÖ¿¹Ô£¬ ¦Ã¦Ä T ϸ°ûÄܹ»Ê¶±ðÕâÖÖ¿¹Ô½ø¶ø»î»¯±äÐγÉΪԲÐÎС¹¤³§£¬×îÏÈ´ó×ÚÉú²úÒ»ÖÖÉú³¤Òò×Ó£¬ÕâЩÉú³¤Òò×ÓÍŽᵽ½ÇÖÊϸ°ûºÍÆäËûÉÏÆ¤Ï¸°û£¬Ôö½øËüÃÇÔöÖ³ÒÔ±ÕºÏÉ˿ڡ£ ¦Ã¦Ä T ϸ°û×Ô¼ºÒ²ÔöÖ³À´ÔöÇ¿ÉË¿ÚÓúºÏ·´Ó¦¡£
¡¾µãÆÀ¡¿
¡¡¡¡¦Ã¦Ä T ϸ°ûÔö½øÉÏÆ¤×éÖ¯ÉË¿ÚÓúºÏµÄ¹¦Ð§ºÍ»úÀíµÄÆÊÎö£¬»áÔö½ø¹ØÓÚÃâÒßϸ°ûÔÚ´´ÉËÓúºÏÖеÄ×÷ÓõĸüÉîÈëÑо¿£¬¹ØÓÚ½øÒ»²½Ã÷È·´´ÉËÓúºÏ²¢¿ª·¢¸üºÃµÄÖÎÁÆÊÖ¶ÎÓкܴó×ÊÖú¡£
¡¾ÔÎÄժ¼¡¿ Science , 2010; 329 (5996): 1205-1210 DOI: 10.1126/science.1192698
The Junctional Adhesion Molecule JAML Is a Costimulatory Receptor for Epithelial ¦Ã¦Ä T Cell Activation .
Deborah A. Witherden, Petra Verdino, Stephanie E, et al.
T cells present in epithelial tissues provide a crucial first line of defense against environmental insults, including infection, trauma, and malignancy, yet the molecular events surrounding their activation remain poorly defined. Here we identify an epithelial T cell¨Cspecific costimulatory molecule, junctional adhesion molecule¨Clike protein (JAML). Binding of JAML to its ligand Coxsackie and adenovirus receptor (CAR) provides costimulation leading to cellular proliferation and cytokine and growth factor production. Inhibition of JAML costimulation leads to diminished T cell activation and delayed wound closure akin to that seen in the absence of T cells. Our results identify JAML as a crucial component of epithelial T cell biology and have broader implications for CAR and JAML in tissue homeostasis and repair.
4. ÂѰ×ÖÊ TIMP3 Ôö½øÔìѪ¸Éϸ°ûÆÆËé
¡¾ÕªÒª¡¿ лªÍø 2010-8-31 9:20:54
¡¡¡¡Ò»ÏîÐÂÑо¿·¢Ã÷£¬Ò»ÖÖÂѰ×ÖÊÄܹ»Ôö½øÔìѪ¸Éϸ°ûÔöÖ³²¢ÐγÉѪҺϸ°û£¬Òò´ËÕâÖÖÂѰ×ÖÊÓпÉÄÜÓÃÀ´ÖÆ×÷Ò©¼Á£¬ÒÔÓÃÓÚ»Ö¸´Òò·Å»¯ÁƶøïÔ̵İ×ϸ°ûºÍºìϸ°û¡£ÔìѪ¸Éϸ°ûÊÇÖ¸¹ÇËèÖеĸÉϸ°û£¬¾ßÓÐ×ÔÎÒ¸´ÖÆÄÜÁ¦£¬ÇÒ¿ÉÒÔÆÆËéÐγɰ×ϸ°û¡¢ºìϸ°ûºÍѪС°åµÈ¡£µ«ÔìѪ¸Éϸ°ûͨ³£Ö»ÓкÜÉÙÒ»²¿·Ö»ºÂýÆÆË飬´ó²¿·ÖÏÕЩ¶¼´¦ÓÚ ¡° ÕÝ·ü״̬ ¡± ¡£ÈËÌåÒò»¯ÁƺͷÅÁƵ¼ÖÂѪҺϸ°ûïÔ̺ó£¬ÔìѪ¸Éϸ°û»á×îÏÈÆÆË飬µ«Æä»úÖÆÒ»Ö±Ã»ÓÐŪÇå¡£ÈÕ±¾ÇìÓ¦ÒåÛÓ´óѧ¸±½ÌÊÚÖеºÐãÃ÷µÈÈËÔÚ 27 ÈÕµÄÃÀ¹ú¡¶ÑªÒº¡·Ô¿¯ÉϽÒÏþÂÛÎÄ˵£¬ËûÃÇÔÚ¶¯ÎïʵÑéÖз¢Ã÷£¬ÀÏÊó¾ÙÐл¯ÁƺͷÅÁƺ󣬹ÇËèÖгÆÎª ¡°TIMP3¡± µÄÂѰ×ÖÊÔöÌí¡£¶øÔÚ×÷ÓýÃóÖУ¬Ïò²É×ÔÀÏÊó¹ÇËèµÄÔìѪ¸Éϸ°ûÌí¼Ó ¡°TIMP3¡± ÂѰ×ÖʾÙÐÐ×÷Óýºó£¬·¢Ã÷ÔìѪ¸Éϸ°ûÔöÖ³»îÔ¾£¬ÊýÄ¿Ï൱ÓÚδÌí¼ÓʱµÄ 1.5 ±¶ÖÁ 2 ±¶£¬ÑªÒºÏ¸°ûÒ²ËæÖ®ÔöÌí¡£Ñо¿Ö°Ô±»¹·¢Ã÷£¬ÈôÊÇʹÀÏÊóÌåÄÚÎÞ·¨Éú²ú ¡°TIMP3¡± ÂѰ×ÖÊ£¬ÔòѪҺϸ°ûïÔÌÄÑÒÔ»Ö¸´¡£¶øÒ»µ© ¡°TIMP3¡± ¹ýÊ££¬´¦ÓÚ ¡° ÕÝ·ü ¡± ״̬µÄÔìѪ¸Éϸ°û¾ÍËÕÐѹýÀ´£¬×îÏÈÆÆËé¡£Ñо¿Ö°Ô±Ëµ£¬ÔÚ¾ÙÐл¯ÁƺͷÅÁÆÊ±£¬ÈËÌå¹ÇËèÖеÄѪҺϸ°û»áÊܵ½ÆÆË𣬴ӶøïÔÌ£¬ÈÝÒ×·ºÆðѬȾºÍ ѪÐé µÈÎÊÌâ¡£ÈçʹÓà ¡°TIMP3¡± ÂѰ×ÖÊ£¬¾ÍÓÐÍû¼ÓËÙ»Ö¸´Òò»¯ÁƺͷÅÁƶøïÔ̵ÄѪҺϸ°û£¬³ý±ÜÃâѬȾÍ⣬»¹¿ÉÒÔïÔÌÊäѪÁ¿¡£
¡¾µãÆÀ¡¿
¡¡¡¡ÀÏÊóϸ°û×÷ÓýºÍ¶¯ÎïʵÑéÏÔʾ TIMP3 ÂѰ×ÖÊ¿ÉÒÔÔö½øÔìѪ¸Éϸ°ûÆÆËéÔöÖ³£¬µ«ÆÚÍûÕâÒ»ÂѰ×ÄÜÓÐÖúÓÚ°©Ö¢µÄ¸¨ÖúÖÎÁÆ£¬»¹Ðè½øÒ»²½Ñо¿ÊÇ·ñÔÚÈËÌåÖÐÓÐͬÑùЧ¹ûÒÔ¼°ÔõÑùÔö½øÔÚÌåÄÚ±¬·¢ÕâÀàÂѰ×ÖÊ¡£
¡¾ÔÎÄժ¼¡¿ Blood DOI 10.1182/blood-2010-01-266528.
TIMP-3 recruits quiescent hematopoietic stem cells into active cell cycle and expands multipotent progenitor pool
Hideaki Nakajima1, Miyuki Ito, David S. Smookler, et al.
Regulating transition of hematopoietic stem cells (HSCs) between quiescent and cycling states is critical for maintaining homeostasis of blood cell production. The cycling states of HSCs are regulated by the extracellular factors such as cytokines and extracellular matrix, however, the molecular circuitry for such regulation remains elusive. Here we show that tissue inhibitor of metalloproteinase-3 (TIMP-3), an endogenous regulator of metalloproteinases, stimulates HSC proliferation by recruiting quiescent HSCs into the cell cycle. Myelosuppression induced TIMP -3 in the bone marrow prior to hematopoietic recovery. Interestingly, TIMP-3 enhanced proliferation of HSCs and promoted expansion of multipotent progenitors, which was achieved by stimulating cell-cycle entry of quiescent HSCs without compensating their long-term repopulating activity. Surprisingly, this effect did not require metalloproteinase inhibitory activity of TIMP-3, and was possibly mediated through a direct inhibition of angiopoietin-1 signaling, a critical mediator for HSC quiescence. Furthermore, BM recovery from myelosuppression was accelerated by overexpression of TIMP-3, and in turn, impaired in TIMP-3-deficient animals. These results suggest that TIMP-3 may act as a molecular cue in response to myelosuppression for recruiting dormant HSCs into active cell cycle, and may be clinically useful for facilitating hematopoietic recovery after chemotherapy or ex vivo expansion of HSCs.
5. ÖвÝÒ©ÌáÈ¡Îï ´ó»ÆËØ ¸ÄÉÆÌÇÄò²¡ºÍÒȵºËضԿ¹µÄ»úÀí
¡¾ÕªÒª¡¿
¡¡¡¡´ó»ÆËØÊÇÒ»ÖÖ¿É×Ô×ð»Æ¡¢»¢ÕȵȶàÖÖÖвÝÒ©Ö®ÖÐÌáÈ¡µÄ×ÔÈ»²úÆ·£¬ËüÔÚ¼õÇá II ÐÍÌÇÄò²¡µÄÓ°Ïì·½ÃæÏÔʾ³öÁ˺ܴóµÄǰ;¡£¿¯µÇÓÚ±¾Ô¡¶Ó¢¹úÒ©ÀíѧÆÚ¿¯¡·£¨ British Journal of Pharmacology £©µÄÑо¿Ð§¹ûÏÔʾ£¬¶ÔÓÉÒûʳµ¼Ö·ÊÅÖµÄСÊó¸øÓè´ó»ÆËØÖ®ºó£¬ÆäѪÌǺÍѪÇåÒȵºËØÅ¨¶È½µµÍ£¬ÆäÒȵºËضԿ¹»ñµÃÁ˸ÄÉÆ£¬´Ó¶øµ¼Ö¸üºÃµÄѪ֬¿µ½¡Ë®Æ½¡£Í¬Ê±Ëü»¹¼õÇáÁËСÊóµÄÌåÖØ£¬²¢ïÔÌÁËÆäÖÐÑëÌåÖ¬¡£ÂÛÎÄÖ÷Òª×÷Õß¡¢¾ÍÖ°ÓÚÖйú¿ÆÑ§ÔºÉϺ£Ò©ÎïÑо¿Ëù£¨ Shanghai Institute of Materia Medica, Chinese Academy of Sciences £©µÄ ÀäÓ± ²©Ê¿ËµµÀ£º ¡° ÈôÊÇÔÚÈËÀàÉíÉÏÖØÏÖÕâһЧ¹û£¬ËùÓÐÕâЩת±ä¶¼½«ÓÐÒæÓÚÊÜ II ÐÍÌÇÄò²¡»òÕ߯äËûÓëÒȵºËضԿ¹Ïà¹ØÁªµÄ´úлÐÔ¼²²¡Ó°ÏìµÄ²¡ÈË¡£ ¡± Ô½À´Ô½¶àµÄÑо¿ÏÔʾ£¬Ò»ÖÖÃûΪ 11¦Â-HSD1 µÄøÔÚÈËÌå¶ÔÒûʳÖÐËùº¬ÌǷֵķ´Ó¦ÖÐÊÎÑÝÁËÖ÷Òª½ÇÉ«¡£µ±Ò»Ð¡ÎÒ˽¼ÒʳÓú¬ÌÇʳÎïʱ£¬´ó×ÚÆÏÌÑÌǽøÈëѪҺ¡£×÷Ϊ»ØÓ¦£¬ÈËÌåÊͷųöÒȵºËØ£¬ÕâÖÖ¼¤Ëػᴥ·¢ÖÖÖÖ¹¦Ð§£¬×ÊÖú´ÓѪҺÖÐɨ³ý¹ýÁ¿µÄÆÏÌÑÌÇ¡£È»¶ø£¬ÈËÌåÄÚÉÐÓÐÁíһϵÁм¤ËØ£¬ÃûΪÌÇÆ¤Öʼ¤ËØ£¬ËüÃǵÄ×÷ÓÃÓëÒȵºËØÕýºÃÏà·´¡£¶øÕâÀïÕýÊÇ 11¦Â-HSD1 Æð×÷ÓõÄÒªº¦£¬ÓÉÓÚÕâÖÖøʹÌÇÆ¤Öʼ¤ËصÄ×÷ÓÃÄÜÁ¦ÔöÌí¡£
¡¡¡¡¸ÃÏîÑо¿Ê×´ÎÅú×¢£¬´ó»ÆËØ¶Ô 11¦Â-HSD1 À´ËµÊÇÒ»ÖÖÇ¿ÓÐÁ¦µÄÑ¡ÔñÐÔÒÖÖÆ¼Á£¬´Ó¶øÄܹ»ÓÐÓõØÏÞÖÆÌÇÆ¤Öʼ¤ËصÄ×÷ÓÃЧ¹û£¬²¢¸ÄÉÆÌÇÄò²¡ºÍÒȵºËضԿ¹¡£ Àä ²©Ê¿Ëµ£º ¡° ÎÒÃǵÄÊÂÇéÏÔʾ£¬ÕâÖÖÖвÝÒ©µÄ×ÔÈ»ÌáÈ¡Îï¿ÉÄÜÖ¸³öÁËÒ»Ìõ×ÊÖúÖÎÁÆ II ÐÍÌÇÄò²¡ÒÔ¼°ÆäËû´úлÔÓÂÒµÄеÄ;¾¶¡£Îª½øÒ»²½Éú³¤ÕâÖÖ;¾¶£¬Ñо¿Ö°Ô±ÐèÒª¿ª·¢Óë´ó»ÆËØ×÷ÓÃÀàËÆµÄ»¯Ñ§Ò©Æ·£¬¿´¿´ÕâЩҩƷÊÇ·ñ¿ÉÒÔ×÷ΪÖÎÁÆÒ©ÎïʹÓᣠ¡±
¡¾µãÆÀ¡¿
¡¡¡¡ÖвÝÒ©×ÔÈ»ÌáÈ¡Îï×÷ÓûúÀíµÄÖð²½ÆÊÎö£¬½«¼«´óµÄÍÆ¶¯ÖвÝÒ©¼°Æä×ÔÈ»ÌáÈ¡ÎïÔÚÏÖ´úÒ©ÎïÖÎÁÆÖеÄ×÷ÓúÍÖ÷ÒªÐÔ£¬ÓÈÆäÊÇÔÚÎ÷Ò©ÌØÊâÊÇ»¯Ñ§ºÏ³ÉÒ©·ºÆðºó¼Ì·¦Á¦µÄÏÖ×´Ï¡£
¡¾ÔÎÄժ¼¡¿ British Journal of Pharmacology DOI: 10.1111/j.1476-5381.2010.00826.x
Emodin, a natural product, selectively inhibits 11¦Â-hydroxysteroid dehydrogenase type 1 and ameliorates metabolic disorder in diet-induced obese mice
Ying Feng, Su-ling Huang, Wei Dou, et al.
BACKGROUND AND PURPOSE 11¦Â-Hydroxysteroid dehydrogenase type 1 (11¦Â-HSD1) is an attractive therapeutic target of type 2 diabetes and metabolic syndrome. Emodin, a natural product and active ingredient of various Chinese herbs, has been demonstrated to possess multiple biological activities. Here, we investigated the effects of emodin on 11¦Â-HSD1 and its ability to ameliorate metabolic disorders in diet-induced obese (DIO) mice.
EXPERIMENTAL APPROACH Scintillation proximity assay was performed to evaluate inhibition of emodin against recombinant human and mouse 11¦Â-HSDs. The ability of emodin to inhibit prednisone- or dexamethasone-induced insulin resistance was investigated in C57BL/6J mice and its effect on metabolic abnormalities was observed in DIO mice.
KEY RESULTS Emodin is a potent and selective 11¦Â-HSD1 inhibitor with the IC 50 of 186 and 86 nM for human and mouse 11¦Â-HSD1, respectively. Single oral administration of emodin inhibited 11¦Â-HSD1 activity of liver and fat significantly in mice. Emodin reversed prednisone-induced insulin resistance in mice, whereas it did not affect dexamethasone-induced insulin resistance, which confirmed its inhibitory effect on 11¦Â-HSD 1 in vivo . In DIO mice, oral administration of emodin improved insulin sensitivity and lipid metabolism, and lowered blood glucose and hepatic PEPCK, and glucose-6-phosphatase mRNA.
CONCLUSIONS AND IMPLICATIONS This study demonstrated a new role for emodin as a potent and selective inhibitor of 11¦Â-HSD1 and its beneficial effects on metabolic disorders in DIO mice. This highlights the potential value of analogues of emodin as a new class of compounds for the treatment of metabolic syndrome or type 2 diabetes.
6. ¹²Éú¾úȺʧµ÷»òµ¼Ö´úлÐÔ¼²²¡
¡¾ÕªÒª¡¿ £¨ÈªÔ´£ºÎĻ㱨 ÐíçùÃô£©
¡¡¡¡³ÔËáÄÌ¡¢Ôö²¹ÒæÉú¾ú£¬¶Ô¿µ½¡ºÃ£¬³ÔÌ«¶àÈâ»áʹÌåÄÚ±¬·¢²»ÉÙ¶¾ËØ ¡ª¡ª ÕâÊÇ¹ã¸æ¹´ÀÕµÄÒÜÏ룬ÕÕ¾ÉÕæÓÐÆäÊ£¿½üÄêÀ´£¬¿ÆÑ§¼Ò·¢Ã÷£¬³ýÁËÒÅ´«ºÍ²»¿µ½¡µÄÉúÑÄ·½·¨Í⣬ ½è¾ÓÔÚÈËÌåÄڵĹ²Éú¾úȺʧµ÷ͬÑùÓпÉÄÜÒý·¢ÂýÐÔ´úлÐÔ¼²²¡£¬¶øÉÅʳÊǵ÷Àí¾úȺµÄÖ÷Ҫ;¾¶Ö®Ò»¡£
¡¡¡¡ÓÐϸ¾úÈëÇÖ£¬ÈËÌå¾Í»á·¢ÈÈ£¬ÕâÊÇÏÔ¶øÒ×¼ûµÄÑ×Ö¢¡£²»¹ý£¬ÈËÌåÄÚ»¹±£´æÁíÒ»ÖÖ ¡° ÎÂÍÌË® ¡± °ãµÄÂýÐÔÑ×Ö¢¡£ÕâÒª´Ó¾úȺÌá¼°¡£ÈËÌ峦µÀÖб£´æ´ó×ڵĹ²Éúϸ¾ú£¬·ÖΪ¸ïÀ¼ÊÏÑôÐÔ¾úºÍ¸ïÀ¼ÊÏÒõÐÔ¾ú£¬ºóÕ߻ᱬ·¢ÄÚ¶¾ËØ£¬²¢ÔÚ¾úÌåËÀºó½«ÆäÊͷŽøÑªÒº¡£ ¶¯ÎïÑо¿·¢Ã÷£¬¸ßÖ¬·¾Ê³Îï»á¸Ä±ä³¦µÀ¾úȺµÄ×é³É£¬Ê¹¸ïÀ¼ÊÏÒõÐÔ¾úµÄ±ÈÀýÔö¸ß£¬´Ó¶øµ¼ÖÂѪҺÖеÄÄÚ¶¾ËØÅ¨¶ÈÉý¸ß¡£¶øÄÚ¶¾ËØÓÖ»áͨ¹ýһϵÁз´Ó¦£¬¿ªÆôÈËÌåÖеÄÑ×֢ͨµÀ£¬ÈÃÈËÌå´¦ÓÚÂýÐÔÑ×֢״̬ÖÐ £¬Õâ¾ÍºÃ±È¶ÔÃâÒßϵͳµÄÓλ÷Õ½£¬ÈÕ»ýÔÂÀÛ»áÁî»úÌ寣ÓÚÓ¦¶Ô£¬ÎÞ·¨¾ÙÐÐÕý³£µÄг´úл£¬·ÊÅÖ¡¢ÌÇÄò²¡¡¢ÐÄѪ¹Ü¼²²¡µÈ´úлÐÔ¼²²¡¾Í²»Çë×ÔÀ´ÁË¡£
¡¡¡¡¾úȺµÄת±äÊÇ·ñͬÑùÓ°Ïì×ÅÖйúÈ˵Ŀµ½¡ÄØ£¿ÖпÆÔºÉϺ£Éú¿ÆÔºÓªÑø¿ÆÑ§Ñо¿ËùÁÖÐñÑо¿Ô±Ïòµ¼µÄÑо¿ÍŶÓÓëÉϺ£¼²¿ØÖÐÐĺÏ×÷£¬Í¨¹ýÔÚÉϺ£ÉçÇøÈËȺÖпªÕ¹ ¡° ÓªÑø¡¢³¦µÀ¾úȺÓë·ÊÅÖ¹ØÏµµÄ²¡Àý - ±ÈÕÕÑо¿ ¡± ÏîÄ¿£¬·¢Ã÷ ÄÚ¶¾ËصÄÍŽáÂѰ×ÓëÂýÐÔ´úлÐÔ×ÛºÏÕ÷ºÍ 2 ÐÍÌÇÄò²¡Ç×½üÏà¹Ø ¡£ ¶øÄÚ¶¾ËØ×÷ΪһÖÖÍâÔ´ÐÔµÄÓÕµ¼Î¿ÉÄÜÔÚ¼¤»îÂýÐÔÑ×֢ͨ·ºÍ´úлÔÓÂҵı¬·¢Àú³ÌÖÐÆðµ½Ö÷Òª×÷Óà ¡£¸ÃÂÛÎÄ×î½ü½ÒÏþÓÚȨÍþÔÓÖ¾¡¶ÌÇÄò²¡Õչ˻¤Ê¿¡·£¨ Diabetes Care £©¡£
¡¡¡¡ÔÚÕâ´Î´ó¹æÄ£ÈËȺÑо¿ÖУ¬¿ÆÑ§¼Ò·¢Ã÷£¬·ÊÅÖ¸öÌåÖÐÄÚ¶¾ËØÏà¹ØÖ¸±ê±ÈÕý³£ÌåÖØ¸öÌåºá¿ç 1.76 ±¶£»²¢ÇÒ£¬Ñª½¬ÖÐÄÚ¶¾ËØÏà¹ØÖ¸±ê¸ßµÄ¸öÌ壬ÉíÌåÖÐËùÓÐ ¡° »µ·Ö×Ó ¡± ¡¢Ñ×Ö¢Òò×ÓµÄˮƽ¶¼ÏìӦƫ¸ß£¬¶ø¶Ô»úÌåÓб£»¤×÷ÓÃµÄ ¡° ºÃ·Ö×Ó ¡± ÓÖ¶¼Æ«ÉÙ¡£ ¡° ÎÒÃÇ·¢Ã÷Ѫ½¬ÖÐÄÚ¶¾ËØÏà¹ØÖ¸±êµÄŨ¶ÈÔ½¸ß£¬î¾»¼´úлÐÔ¼²²¡µÄΣº¦Ò²Ô½´ó¡£ ¡± ÂÛÎÄÖ÷Òª×÷ÕßÖ®Ò»¡¢ÓªÑøËùËïÁÁ²©Ê¿¸æËß¼ÇÕߣ¬Ñª½¬ÖÐÄÚ¶¾ËØÏà¹ØÖ¸±ê×î¸ß×éµÄ¸öÌåÓë×îµÍ×éÏà±È£¬î¾»¼´úл×ÛºÏÕ÷µÄΣº¦ºá¿ç 2.5 ±¶¡¢»¼ 2 ÐÍÌÇÄò²¡µÄΣº¦ºá¿ç 4.5 ±¶£¡
¡¡¡¡ÕâÏîÑо¿Ê×´ÎÔÚ¹ú¼ÊÉÏͨ¹ý½Ï´ó¹æÄ£µÄÈËȺÑо¿Ö¤Êµ£º¾úȺÉúÎï±ê¼ÇÎïÓëÂýÐÔ´úлÐÔ¼²²¡±£´æÏÔÖøµÄ¹ØÁª¹ØÏµ¡£¹ØÓÚͨË×È˶øÑÔ£¬¿ÆÑ§¼ÒÌáÐÑ˵£¬Æ½Ê±×¢Öضà³ÔµãËáÄÌ¡¢Ê߲ˣ¬ÉÙ³ÔЩÈ⣬´Ó¾úȺµ÷ÀíÉÏ˵£¬¼òÖ±»á¸üÓÐÀûÓÚ¿µ½¡£¬ÔÚÒ»¶¨Ë®Æ½ÉÏïÔ̵ôúлÐÔ¼²²¡µÄΣº¦¡£
¡¾µãÆÀ¡¿
¡¡¡¡´ó¹æÄ£ÈËȺÑо¿·¢Ã÷Ѫ½¬ÖÐÄÚ¶¾ËØÏà¹ØÖ¸±êµÄŨ¶ÈÔ½¸ß£¬î¾»¼´úлÐÔ¼²²¡µÄΣº¦Ò²Ô½´ó£¬¾úȺÉúÎï±ê¼ÇÎïÓëÂýÐÔ´úлÐÔ¼²²¡±£´æÏÔÖøµÄ¹ØÁª¹ØÏµ¡£µ÷ÀíÌåÄÚ¾úȺÒÔÓÐÀûÓÚ¿µ½¡ÐèÒª¸ÄÉÆÒûʳ½á¹¹¡£
¡¾ÔÎÄժ¼¡¿ Diabetes Care September 2010 vol. 33 no. 9 1925-1932
A Marker of Endotoxemia Is Associated With Obesity and Related Metabolic Disorders in Apparently Healthy Chinese
Liang Sun , Zhijie Yu , Xingwang Ye , et al.
OBJECTIVE Elevated lipopolysaccharide-binding protein (LBP), a marker of subclinical endotoxemia, may be involved in the pathogenesis of obesity and metabolic risk. We aimed to investigate the association between plasma LBP and metabolic disorders in apparently healthy Chinese.
RESEARCH DESIGN AND METHODS A population-based study including 559 overweight/obese (BMI ¡Ý 24.0 kg /m 2 ) and 500 normal-weight (18.0 ¡Ü BMI < 24.0 kg /m 2 ) subjects aged 35¨C54 years was conducted in Shanghai , China . Fasting plasma glucose, lipid profile, LBP, high-sensitivity C-reactive protein, interleukin-6, high-molecular-weight (HMW) adiponectin, leptin, hepatic enzymes, and body composition were measured. Metabolic syndrome was defined by the updated National Cholesterol Education Program Adult Treatment Panel III criterion for Asian Americans.
RESULTS LBP levels were significantly higher in overweight/obese individuals than in normal-weight individuals (geometric mean 27.6 [95% CI 25.2¨C30.3] vs. 10.0 [9.1¨C11.1] ¦Ìg/ml; P < 0.001). After multiple adjustments including BMI, the odds ratios were 3.54 (95% CI 2.05¨C6.09) and 5.53 (95% CI 2.64¨C11.59) for metabolic syndrome and type 2 diabetes, respectively, comparing the highest with the lowest LBP quartile. Further adjustments for inflammatory markers almost abolished the significant association of LBP with metabolic syndrome but not that with type 2 diabetes, and controlling for adipokines and hepatic enzymes did not substantially alter the results.
CONCLUSIONS Elevated circulating LBP was associated with obesity, metabolic syndrome, and type 2 diabetes in apparently healthy Chinese. These findings suggested a role of lipopolysaccharide via initiation of innate immune mechanism(s) in metabolic disorders. Prospective studies are needed to confirm these results.