ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨ÁùÊ®Æß£©
£¨11.21-11.27/2011£©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úÐÂ
¡¡¡¡Ö÷ÒªÄÚÈÝ£ºÖ¸£¨Öº£©µÄÐγÉÏÔʾÁË¡°À¬»ø»ùÒò¡±µÄ×÷Óã»ÌÇÄò²¡Ò©½µµÍ»¼°©Î£º¦£»Ï¸°ûÒÆÖ²ÊÜÌåµÄÃâÒßϵͳ¿ØÖÆÒÆÖ²¸Éϸ°ûµÄÔÙÉú£»Ïß³æÑо¿Õ¹ÏÖÉË¿ÚÓúºÏ·´Ó¦µÄÉñÃØ£»Î¬³ÖSip2µÄÒÒõ£»¯ÑÓÉì½ÍĸÊÙÃü£»·¢Ã÷¶ËÁ£Ã¸ÑÓÉì¶ËÁ£µÄÒªº¦·Ö×Ó¿ª¹Ø¡£
¡¡¡¡½¹µã¶¯Ì¬£º·¢Ã÷¶ËÁ£Ã¸ÑÓÉì¶ËÁ£µÄÒªº¦·Ö×Ó¿ª¹Ø¡£
1. Ö¸£¨Öº£©µÄÐγÉÏÔʾÁË¡°À¬»ø»ùÒò¡±µÄ×÷ÓÃ
¡¾¶¯Ì¬¡¿
¡¡¡¡Ö¸£¨Öº£©Í·µÄ½ø»¯ÊÇËÄ×㶯ÎïÀֳɵÄÐëÒª°ì·¨£¬ÔÚÖ¸£¨Öº£©Í··¢ÓýµÄÒªº¦ÒòËØÖУ¬Hoxd»ùÒòÊܵ½Ðµ÷¿ØÖÆ£¬×ÊÖú¹ÜÀíÉú³¤ºÍģʽ¡£ÈðÊ¿¡¢ºÉÀ¼ºÍµÂ¹úµÄ¿ÆÑ§¼Òͨ¹ý̽²é·¢ÓýÖеÄËÄÖ«µÄÈýλ½á¹¹È·¶¨ÁËÓëÕâЩ»ùÒòÓйصÄÖ«¶Ëµ÷Àíλµã¡£¸ÃÒªÁìÍŽáÌåÄÚɾ³ýÌØ¶¨µÄµ÷ÀíÇø£¬ÏÔʾ»ùÒò´ØµÄ»îÐÔ²¿Î»ÓëÊý¸öÔöÇ¿×ÓÑùµÄÐòÁнӴ¥¡£ÕâЩÐòÁÐÊèÉ¢ÔÚÁÚ½üµÄËùνÀ¬»ø»ùÒòÐòÁÐÖУ¬¸÷×Ô¶ÔÔ¤ÆÚµÄÖ¸£¨Öº£©µÄHox»ùÒòת¼×ö³ö¶¨Á¿»ò¶¨ÐÔµÄТ˳¡£ËûÃÇÌá×ÅÃûΪ¡°µ÷ÀíÁеº¡±µÄ»ùÒòϵͳ£¬ÌṩһÖÖÒÅ´«ÎÞаÐÔ¿ÉÄܲ¿·ÖÖ§³ÖËÄ×㶯ÎïÖÐÖ¸£¨Öº£©ÊýÄ¿ºÍÐÎ̬µÄ¶àÑùÐÔÒÔ¼°Ë³Ó¦Ç¿ÁÒת±äµÄÄÜÁ¦¡£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿Åú×¢ÔÚÒ»¾´íÒÔΪûÓÐÈκÎ×÷ÓõÄÀ¬»ø»ùÒòÐòÁÐÖеÄһЩÐòÁÐÄܹ»Ï໥ÍŽᣬµ÷ÀíÈÏÕæÐγÉÖ¸£¨Öº£©Í·µÄ»ùÒòµÄ×÷Óá£ÕâÑùµÄЧ¹ûÅú×¢ÏÖÔÚÈËÀà¶Ô»ùÒòµÄÑо¿ÈÔδ³ÉÊ죬ÓÈÆäÊǶԹ¦Ð§»ùÒòµÄ×÷ÓûúÖÆÉÐÓÐÐí¶àÊÂÇéÒª×ö¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
Cell, 2011; 147 (5): 1132 DOI: 10.1016/j.cell.2011.10.023
A Regulatory Archipelago Controls Hox Genes Transcription in Digits
Thomas Montavon, Natalia Soshnikova, B¨¦n¨¦dicte Mascrez, et al.
Highlights
Hox genes active in digits integrate the input of multiple regulatory elements
The global regulatory architecture of the HoxD locus involves flanking gene deserts
Alterations in this regulatory structure may fine tune digital morphology in tetrapods
Summary
The evolution of digits was an essential step in the success of tetrapods. Among the key players, Hoxd genes are coordinately regulated in developing digits, where they help organize growth and patterns. We identified the distal regulatory sites associated with these genes by probing the three-dimensional architecture of this regulatory unit in developing limbs. This approach, combined with in vivo deletions of distinct regulatory regions, revealed that the active part of the gene cluster contacts several enhancer-like sequences. These elements are dispersed throughout the nearby gene desert, and each contributes either quantitatively or qualitatively to Hox gene transcription in presumptive digits. We propose that this genetic system, which we call a regulatory archipelago, provides an inherent flexibility that may partly underlie the diversity in number and morphology of digits across tetrapods, as well as their resilience to drastic variations.
2. ÌÇÄò²¡Ò©½µµÍ»¼°©Î£º¦
¡¾¶¯Ì¬¡¿
¡¡¡¡Ò»ÖÖÁ®¼ÛµÄ2ÐÍÌÇÄò²¡ÖÎÁÆÒ©ÎÒÖÖÆÌÇÒìÉú»ùÒòת¼µÄ¶þ¼×Ë«ëÒ֤ʵÄܹ»Ô¤·ÀÐí¶à×ÔȻijÈ˹¤ºÏ³ÉµÄ»¯ºÏÎï´Ì¼¤ÈéÏÙ°©Ï¸°ûÉú³¤£¬½µµÍÌÇÄò²¡Ïà¹ØÖ×ÁöµÄΣº¦¡£×î½ü£¬Ö×Áö¸Éϸ°û±»ÒÔΪÊÇÈÏÕæÎ¬³ÖÖ×ÁöÉú³¤£¬¶Ô¿¹ÖÎÁÆ¡£º«¹úºÍÃÀ¹ú¿ÆÑ§¼ÒΪÁËÑéÖ¤¶þ¼×Ë«ëÒ¿ÉÄÜïÔÌÈéÏÙ°©Î£º¦µÄ¼ÙÉ裬½«Éú³¤ÓÚ´ú±íÈËÌåÈéÏÙ°©¸Éϸ°ûȺµÄÈýάÈéÇòÌåÖеÄMCF-7ÈËÌåÈéÏÙ°©Ï¸°ûϵÔÚÓÐ/ÎÞ·Çϸ°û¶¾ÐÔŨ¶ÈµÄ¶þ¼×Ë«ëÒ±£´æÏÂÓÃÖÖÖÖÒÑÖªµÄºÍ¿ÉÄܵÄÈéÏÙ°©ÓÕ·¢¼Á´¦Öóͷ££¬OCT4±í´ï×÷ΪÖ×Áö¸Éϸ°ûµÄ±ê¼Ç£¬²â¶¨ÕâЩϸ°ûµÄÊýÄ¿ºÍ¾Þϸ¡£Ð§¹ûÅú×¢100nMµÄTCDDºÍ10µMµÄË«·ÓAÏñ10µMµÄ´Æ¼¤ËØÒ»ÑùÔöÌíÁËÈýάÈéÇòÌåµÄÊýÄ¿ºÍ¾Þϸ¡£Í¨¹ý¼ì²â±ê¼ÇÎïOCT4£¬ÕâЩÖ°©ÎïµÄ´Ì¼¤ÓëOCT4±í´ïÔö¶àÏà¹Ø¡£ÁíÒ»·½Ã棬1mMºÍ10mMµÄ¶þ¼×Ë«ëÒÄܹ»´ó´óïÔÌÈýάÈéÇòÌåµÄÊýÄ¿ºÍ¾Þϸ¡£Ð§¹û»¹ÏÔʾ¶þ¼×Ë«ëÒÄܹ»ïÔ̴Ƽ¤ËغÍTCDDÓÕÉúµÄÈýάÈéÇòÌåÖÐOCT4µÄ±í´ï£¬µ«ÔÚË«·ÓAÓÕÉúµÄÈýάÈéÇòÌåÖÐÔò²»¿É£¬Åúע˫·ÓA¶ÔÈËÌåÈéÏÙ°©Ï¸°ûÓвî±ðµÄ×÷ÓûúÖÆ¡£ÁíÍ⣬ÕâЩЧ¹ûÖ§³ÖʹÓÃÈýάÈËÌåÈéÏÙ°©¸Éϸ°û×÷ΪһÖÖÊÖ¶ÎɸѡDZÔÚµÄÈËÌåÈéÏÙ°©Ö°©ÎïÒÔ¼°»¯Ñ§Ô¤·ÀºÍÖÎÁƼÁ¡£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿·¢Ã÷ÁËÁ®¼ÛµÄÌÇÄò²¡Ò©Îï¶þ¼×Ë«ëÒÄܹ»Í¨¹ýÒÖÖÆ´Æ¼¤ËØÊÜÌå½éµ¼µÄ°©»ùÒòOCT4µÄ±í´ï£¬ïÔÌÈËÌåÈéÏÙ°©¸Éϸ°ûµÄ×ÔÎÒ¸´ÖÆ¡£Í¬Ê±ÎªÈéÏÙ°©µÄ·ÀÖκͶþ¼×Ë«ëÒµÄÀÏÒ©ÐÂÓÃÌṩÁËеĿÉÄÜ¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
PLoS ONE, 2011; 6 (11): e28068 DOI: 10.1371/journal.pone.0028068
Metformin Represses Self-Renewal of the Human Breast Carcinoma Stem Cells via Inhibition of Estrogen Receptor-Mediated OCT4 Expression
Ji-Won Jung, Sang-Bum Park, Soo-Jin Lee, et al.
Metformin, a Type II diabetic treatment drug, which inhibits transcription of gluconeogenesis genes, has recently been shown to lower the risk of some diabetes-related tumors, including breast cancer. Recently, ¡°cancer stem cells¡± have been demonstrated to sustain the growth of tumors and are resistant to therapy. To test the hypothesis that metformin might be reducing the risk to breast cancers, the human breast carcinoma cell line, MCF-7, grown in 3-dimensional mammospheres which represent human breast cancer stem cell population, were treated with various known and suspected breast cancer chemicals with and without non-cytotoxic concentrations of metformin. Using OCT4 expression as a marker for the cancer stem cells, the number and size were measured in these cells. Results demonstrated that TCDD (100 nM) and bisphenol A (10 µM) increased the number and size of the mammospheres, as did estrogen (10 nM E2). By monitoring a cancer stem cell marker, OCT4, the stimulation by these chemicals was correlated with the increased expression of OCT4. On the other hand, metformin at 1 and 10 mM concentration dramatically reduced the size and number of mammospheres. Results also demonstrated the metformin reduced the expression of OCT4 in E2 & TCDD mammospheres but not in the bisphenol A mammospheres, suggesting different mechanisms of action of the bisphenol A on human breast carcinoma cells. In addition, these results support the use of 3-dimensional human breast cancer stem cells as a means to screen for potential human breast tumor promoters and breast chemopreventive and chemotherapeutic agents.
3. ϸ°ûÒÆÖ²ÊÜÌåµÄÃâÒßϵͳ¿ØÖÆÒÆÖ²¸Éϸ°ûµÄÔÙÉú
¡¾¶¯Ì¬¡¿
¡¡¡¡ÊÜÌåµÄTÁܰÍϸ°ûͨ¹ýIFN-¦ÃºÍTNF-¦Á¿ØÖÆ»ùÓÚ¼ä³äÖʸÉϸ°ûµÄ×éÖ¯ÔÙÉú¡£ÔÚ×éÖ¯ÖØÐÞÖлùÓÚ¸Éϸ°ûµÄÔÙÉúҽѧÊÇÒ»ÖÖºÜÓÐÏ£ÍûµÄÒªÁì¡£ÄϼӴóµÄÃÀ¹ú¿ÆÑ§¼Ò×î½ü±¨µÀÁË´ÙÑ×Tϸ°ûÒÖÖÆÍâÔ´¹ÇËè¼ä³äÖʸÉϸ°û£¨BMMSCs£©Ö¸µ¼¹ÇÍ·ÐÞ¸´µÄÄÜÁ¦¡£ÕâÒ»ÒÖÖÆ×÷ÓÃÀ´×Ô×ÌÈÅËØ¦Ã£¨IFN-¦Ã£©ÓÕµ¼µÄ¸Éϸ°ûÖÐruntÏà¹Ø×ªÂ¼Òò×Ó2£¨Runx-2£©Í¾¾¶ÏÂе÷Ö×Áö»µËÀÒò×Ó¦Á£¨TNF-¦Á£©ÐźŵÄÔöÇ¿¡£ËûÃÇ»¹·¢Ã÷£¬Í¨¹ýÒÖÖÆºËÒò×Ó¦ÊB (NF-¦ÊB)£¬TNF-¦Á½«BMMSCsÖÐIFN-¦Ã¼¤»îµÄ£¬·ÇµòÍöÐÎ̬µÄTNFÊÜÌ峬¼Ò×å³ÉÔ±6£¨Fas£©ÐźÅת±äΪϸ°ûµòÍöÂѰ×ø3ºÍ8Ïà¹ØµÄ´ÙµòÍö¼¶Áª·´Ó¦Ðźţ¬µ¼ÖÂÕâЩϸ°ûµòÍö¡£Ïà·´µØ£¬Í¨¹ýÈ«ÉíÊäÈëFoxp3(+)µ÷ÀíÐÔTϸ°û»ò¾Ö²¿¸øÒ©°¢Ë¾Æ¥ÁÖÀ´ïÔÌIFN-¦Ã ºÍ TNF-¦ÁµÄŨ¶È£¬ÏÔÖøµØÔö½øÁËC57BL/6ÀÏÊó»ùÓÚBMMSCµÄ¹Ç÷ÀÔÙÉúºÍ¹ÇȱËðµÄÐÞ¸´¡£ÕâЩÊý¾ÝºÏÆðÀ´ÅúעǰËùδ֪µÄÊÜÌåTϸ°ûÔÚ»ùÓÚBMMSCµÄ×éÖ¯¹¤³ÌÖеÄ×÷Óá£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿Åú×¢»ùÓÚ¸Éϸ°ûµÄÔÙÉúҽѧÑо¿ÐèÒª¹Ø×¢»úÌå×ÔÉíµÄÃâÒßϵͳ¶Ô×éÖ¯ÔÙÉúµÄµ÷¿Ø£¬¸Éϸ°ûÑо¿ºÍÔÙÉúҽѧµÄÍ»ÆÆÀë²»¿ª¸Éϸ°ûËù´¦»úÌåÇéÐεÄÑо¿¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
Nature Medicine, 2011 DOI: 10.1038/nm.254
Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-¦Ã and TNF-¦Á
Yi Liu, Lei Wang, Takashi Kikuiri, et al.
Stem cell-based regenerative medicine is a promising approach in tissue reconstruction. Here we show that proinflammatory T cells inhibit the ability of exogenously added bone marrow mesenchymal stem cells (BMMSCs) to mediate bone repair. This inhibition is due to interferon ¦Ã (IFN-¦Ã)-induced downregulation of the runt-related transcription factor 2 (Runx-2) pathway and enhancement of tumor necrosis factor ¦Á (TNF-¦Á) signaling in the stem cells. We also found that, through inhibition of nuclear factor ¦ÊB (NF-¦ÊB), TNF-¦Á converts the signaling of the IFN-¦Ã-activated, nonapoptotic form of TNF receptor superfamily member 6 (Fas) in BMMSCs to a caspase 3- and caspase 8-associated proapoptotic cascade, resulting in the apoptosis of these cells. Conversely, reduction of IFN-¦Ã and TNF-¦Á concentrations by systemic infusion of Foxp3(+) regulatory T cells, or by local administration of aspirin, markedly improved BMMSC-based bone regeneration and calvarial defect repair in C57BL/6 mice. These data collectively show a previously unrecognized role of recipient T cells in BMMSC-based tissue engineering.
4. Ïß³æÑо¿Õ¹ÏÖÉË¿ÚÓúºÏ·´Ó¦µÄÉñÃØ
¡¾¶¯Ì¬¡¿
¡¡¡¡ÔÚÑÏ¿áµÄÇéÐÎÖÐÉúÑÄ£¬¶¯Îï±ØÐèÄܹ»ÐÞ¸´Æ¤·ô´´ÉË£¬È»¶øÌåÄÚÆô¶¯´´ÉËÐÞ¸´µÄÐźÅ;¾¶»¹²»Ã÷Îú¡£ÔÚÏß³æÖУ¬p38ÆÆËéËØ¼¤»îµÄÂѰ׼¤Ã¸£¨MAPK£©¼¶Áª·´Ó¦Ôö½øÓ¦¶Ô´´É˵ÄÏÈÌìÃâÒß·´Ó¦£¬µ«²»ÊÇ´´ÉËÓúºÏÆäËû·½ÃæËùÐèµÄ¡£ÃÀ¹ú¿ÆÑ§¼ÒΪ´ËÔÚÏß³æ±íƤÖÐ̽²éÁËÆäËûµÄ´´ÉË·´Ó¦ÐźÅ;¾¶¡£Ð§¹ûÅú×¢Ïß³æ±íƤ´´ÉËÒý·¢Ñ¸ËÙ¶øÒ»Á¬µÄ±íƤÖиÆÀë×ÓŨ¶ÈµÄÉÏÉý£¬ÕâÊÇ´´ÉËºó´æ»îµÄÒªº¦¡£´´ÉË´¥·¢µÄ¸ÆÀë×ÓÔö¶àÐèÒª±íƤ˲ʱÊÜÌåµçѹͨµÀ¡¢melastatin¼Ò×壨TRPM£©Í¨µÀGTL-2ºÍIP3R´Ì¼¤µÄÄÚ²¿Öü´æ³ØµÄÊÍ·Å¡£ËûÃÇÈ·Á¢ÁËÒ»¸ö±íƤÐźŴ«µ¼Í¾¾¶£¬°üÀ¨G¦Áq EGL-30 ¼°ÆäЧӦÆ÷ PLC¦Â EGL-8¡£¸Ã;¾¶Ê§Ð§µÄ»°»áµ¼ÖÂË𺦴´ÉËºó´æ»î¡£G¦Áq-Ca2+;¾¶¶ÔÒÑÖªµÄÓ¦¶Ô´´É˵ÄÏÈÌìÃâÒß·´Ó¦²»ÊDZØÐèµÄ £¬µ«»áÔö½ø¼¡¶¯ÂѰ×ÒÀÀµµÄÉ˿ڱպϡ£É˿ڱպÏÐèÒªCdc42СGTPøºÍArp2/3-ÒÀÀµµÄ¼¡¶¯ÂѰ׾ۺϣ¬²¢±»Rho ºÍ·Ç¼¡ÈâµÄ¼¡ÇòÂѰ׸ºÏòµ÷Àí¡£ËûÃÇ»¹·¢Ã÷éæÃüÏà¹ØÂѰ׼¤Ã¸DAPK-1¸ºÏòµ÷ÀíÉ˿ڱպϡ£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿Åú×¢Ïß³æÆ¤·ô´´É˻ᴥ·¢¸ÆÀë×ÓÒÀÀµµÄÐźż¶Áª·´Ó¦Ôö½øÉ˿ڱպϣ¬Í¬Ê±°éÓÐËðÉËÒýÆðµÄÏÈÌìÃâÒß·´Ó¦¡£¹ØÓÚÊìϤ´´ÉËÔçÆÚµÄÉú»¯ÊÂÎñºÍÔö½ø´´ÉËÓúºÏÑо¿ÓÐ×ÊÖú¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
Current Biology, 2011; DOI: 10.1016/j.cub.2011.10.050
A G¦Áq-Ca2 Signaling Pathway Promotes Actin-Mediated Epidermal Wound Closure in C. elegans
Suhong Xu, Andrew D. Chisholm.
Background
Repair of skin wounds is essential for animals to survive in a harsh environment, yet the signaling pathways initiating wound repair in vivo remain little understood. In Caenorhabditis elegans, a p38 mitogen-activated protein kinase (MAPK) cascade promotes innate immune responses to wounding but is not required for other aspects of wound healing. We therefore set out to identify additional wound response pathways in C. elegans epidermis.
Results
We show here that wounding the adult C. elegans skin triggers a rapid and sustained rise in epidermal Ca2+ that is critical for survival after wounding. The wound-triggered rise in Ca2+ requires the epidermal transient receptor potential channel, melastatin family (TRPM) channel GTL-2 and IP3R-stimulated release from internal stores. We identify an epidermal signal transduction pathway that includes the G¦Áq EGL-30 and its effector PLC¦Â EGL-8. Loss of function in this pathway impairs survival after wounding. The G¦Áq-Ca2+ pathway is not required for known innate immune responses to wounding but instead promotes actin-dependent wound closure. Wound closure requires the Cdc42 small GTPase and Arp2/3-dependent actin polymerization and is negatively regulated by Rho and nonmuscle myosin. Finally, we show that the death-associated protein kinase DAPK-1 acts as a negative regulator of wound closure.
Conclusions
Skin wounding in C. elegans triggers a Ca2+-dependent signaling cascade that promotes wound closure, in parallel to the innate immune response to damage. Wound closure requires actin polymerization and is negatively regulated by nonmuscle myosin.
5. ά³ÖSip2µÄÒÒõ£»¯ÑÓÉì½ÍĸÊÙÃü
¡¾¶¯Ì¬¡¿
¡¡¡¡ÂѰ×ÒÒõ£»¯ÊÇÓ°ÏìÐí¶àϸ°ûÉúÃüÀú³ÌµÄÖ÷ÒªµÄ·ÒëºóÐÞÊΡ£ÃÀ¹úºĮ́ÍåµÄ¿ÆÑ§¼Ò×î½ü·¢Ã÷Ëæ×Åϸ°û±äÀÏ£¬µ¥Ï¸°û½ÍĸÖÐAMP¼¤»îµÄÂѰ׼¤Ã¸Snf1¸´ºÏÎïµÄ¦Âµ÷ÀíÑÇ»ùSip2µÄNuA4ÒÒõ£»¯ïÔÌ¡£Í¨¹ýÞ׿¹NuA4ÒÒõ£»ù×ªÒÆÃ¸ºÍRpd3ÍÑÒÒõ£»ùø¿ØÖƵÄSip2ÒÒõ£»¯ÔöÇ¿ÁËÓëSnf1¸´ºÏÎïµÄ´ß»¯ÑÇ»ùSnf1µÄÏ໥×÷Óá£Sip2-Snf1Ï໥×÷ÓÃÒÖÖÆSnf1µÄ»îÐÔ£¬ïÔÌÏÂÓΰеãSch9£¨Akt/S6KͬԴÎµÄÁ×Ëữ£¬×îÖÕµ¼ÖÂÉú³¤±äÂý¿ÉÊÇÑÓÉìÁËϸ°û¸´ÖƵÄÊÙÃü£¨¸´ÖÆ´ÎÊý£©¡£Sip2ÒÒõ£»¯Ä£ÄâÎï¸üÄܶԿ¹Ñõ»¯Ñ¹Á¦¡£ËûÃÇ»¹·¢Ã÷Sip2ÒÒõ£»¯µÄ¿¹ÐàÂõ×÷Óò»ÒÀÀµÍâÀ´ÓªÑøºÍTORC1»îÐÔ¡£ËûÃÇÌá³öÂѰ×ÒÒõ£»¯-Á×ËữÁ¬Ëø·´Ó¦µ÷ÀíSch9»îÐÔ£¬¿ØÖÆ×Ô¼ºµÄÐàÂõ£¬ÑÓÉì½Íĸ×ÌÉúµÄÊÙÃü£¨×ÌÉú¸ü¶à´ú£©¡£×ÔÈ»½ÍĸµÄÕý³£×ÌÉúÊÙÃüÊÇ25´ú£¬¶øÍ¨¹ý»ùÒò¹¤³Ìˢлָ´ÒÒõ£»¯»¯Ñ§ÐÞÊεĽÍĸ×ÌÉúÊÙÃüµÖ´ï38´ú£¬ÑÓÉìÁË50%¡£
¡¾µãÆÀ¡¿
¡¡¡¡ÔÚ½ÍĸÖÐά³ÖSnf1¸´ºÏÎï¦Âµ÷ÀíÑÇ»ùSip2µÄÒÒõ£»¯£¬¾ßÓп¹ÐàÂõ×÷Óá£ÎÄÖÐʵÑéÁËͨ¹ý»ùÒòË¢ÐÂÄ£ÄâÕâÒ»ÒÒõ£»¯Î¬³ÖÀú³Ì£¬µÖ´ïÁËÑÓÉì½ÍĸÊÙÃü´ï50%µÄЧ¹û¡£ÈôÊDz»±ØË¢Ð»ùÒò£¬Í¨¹ýÆäËû¸ü×ÔÈ»µÄÒªÁìÒ²ÄÜά³ÖSip2µÄÒÒõ£»¯£¬¿ÉÄÜÊÇ¿¹ÐàÂõµÄÖØ´óÍ»ÆÆ¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
Cell, 2011; 146 (6): 969 DOI: 10.1016/j.cell.2011.07.044
Acetylation of Yeast AMPK Controls Intrinsic Aging Independently of Caloric Restriction
Jin-Ying Lu, Yu-Yi Lin, Jin-Chuan Sheu, et al.
Acetylation of histone and nonhistone proteins is an important posttranslational modification affecting many cellular processes. Here, we report that NuA4 acetylation of Sip2, a regulatory ¦Â subunit of the Snf1 complex (yeast AMP-activated protein kinase), decreases as cells age. Sip2 acetylation, controlled by antagonizing NuA4 acetyltransferase and Rpd3 deacetylase, enhances interaction with Snf1, the catalytic subunit of Snf1 complex. Sip2-Snf1 interaction inhibits Snf1 activity, thus decreasing phosphorylation of a downstream target, Sch9 (homolog of Akt/S6K), and ultimately leading to slower growth but extended replicative life span. Sip2 acetylation mimetics are more resistant to oxidative stress. We further demonstrate that the anti-aging effect of Sip2 acetylation is independent of extrinsic nutrient availability and TORC1 activity. We propose a protein acetylation-phosphorylation cascade that regulates Sch9 activity, controls intrinsic aging, and extends replicative life span in yeast.
6. ·¢Ã÷¶ËÁ£Ã¸ÑÓÉì¶ËÁ£µÄÒªº¦·Ö×Ó¿ª¹Ø
¡¾¶¯Ì¬¡¿
¡¡¡¡½ø»¯ÉÏÊØ¾ÉµÄ¶ËÁ£ºÇ»¤ÂѰ׸´ºÏÎïÔÚ²¸È鶯ÎïºÍÁÑÖ³½ÍĸµÄ¶ËÁ£Ã¸µ÷ÀíÖмÈÓÐÕýÃæ×÷ÓÃÒ²ÓиºÃæ×÷Óá£Ö»¹Ü²¸È鶯Îïϸ°ûµÄºÇ»¤ÂѰױÜÃâ¼ì²éµã¼¤Ã¸ATMºÍATRÔÚ¶ËÁ£´¦³ä·Ö¼¤»îDNAËðÉË·´Ó¦£¬ÕâЩ¼¤Ã¸Ò²Ôö½ø¶ËÁ£µÄά»¤¡£È±ÉÙTel1£¨ATMÖ±½ÓͬԴÎºÍRad3£¨ATRÖ±½ÓͬԴÎµÄÁÑÖ³½Íĸϸ°ûÎÞ·¨ÕÐļ¶ËÁ£Ã¸µ½¶ËÁ£ÉÏ£¬ÎÞ·¨Í¨¹ý»·ÐÎȾɫÌå´æ»î¡£¿ÉÊÇ£¬»¹²»ÖªµÀTel1ATMºÍRad3ATR¶ÔÓ¦µÄ¶ËÁ£µ×Îï¡£ÃÀ¹ú¿ÆÑ§¼Ò×î½üµÄÑо¿Åú×¢Tel1ATMºÍ/»òRad3ATRµ÷ÀíµÄºÇ»¤ÂѰ×ÑÇ»ùCcq1ÔÚ93ºÅËÕ°±ËáÉϵÄÁ×ËữÊǶËÁ£Ã¸ÁªÏµ¶ËÁ£Ëù±ØÐèµÄ¡£ÁíÍ⣬¶ËÁ£Ã¸ÑÇ»ùEst1Ö±½ÓÓëCcq1µÄÁ×ËữµÄ93ºÅËÕ°±ËáÏ໥×÷ÓÃÒÔ°ü¹Ü¶ËÁ£µÄά»¤¡£ºÇ»¤ÂѰ×ÑÇ»ùTaz1, Rap1 ºÍ Poz1 (ÒÔǰÒÑÈ·ÈϵĶËÁ£Ã¸ÒÖÖÆ¼Á) Ò²¸ºÏòµ÷Àí Ccq1Á×Ëữ ¡£ËùÓÐÕâЩ·¢Ã÷֤ʵTel1ATM/Rad3ATRÒÀÀµµÄ Ccq1 µÄ93ºÅËÕ°±ËáÁ×ËữÊÇÁÑÖ³½Íĸά»¤¶ËÁ£µÄÒªº¦µ÷ÀíÆ÷¡£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿½øÒ»²½²ûÊÍÁ˶ËÁ£Ã¸Í¾¾¶Î¬»¤¶ËÁ£³¤¶ÈµÄ»úÖÆ£¬¹ØÓÚÊìϤ¸÷ϸ°û×é·ÖÔõÑùе÷Ò»ÖÂά³Ö¶ËÁ£µÄÕý³£¹¦Ð§ºÍѰÕÒÔ¤·À°©Ö¢µÄÒªÁìÓÐÖ÷ÒªÒâÒå¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
Nature Structural & Molecular Biology, 2011; DOI: 10.1038/nsmb.2187
Tel1ATM and Rad3ATR kinases promote Ccq1-Est1 interaction to maintain telomeres in fission yeast
Bettina A Moser, Ya-Ting Chang, Jorgena Kosti, et al.
The evolutionarily conserved shelterin complex has been shown to play both positive and negative roles in telomerase regulation in mammals and fission yeast. Although shelterin prevents the checkpoint kinases ATM and ATR from fully activating DNA damage responses at telomeres in mammalian cells, those kinases also promote telomere maintenance. In fission yeast, cells lacking both Tel1 (ATM ortholog) and Rad3 (ATR ortholog) fail to recruit telomerase to telomeres and survive by circularizing chromosomes. However, the critical telomere substrate(s) of Tel1ATM and Rad3ATR was unknown. Here we show that phosphorylation of the shelterin subunit Ccq1 on Thr93, redundantly mediated by Tel1ATM and/or Rad3ATR, is essential for telomerase association with telomeres. In addition, we show that the telomerase subunit Est1 interacts directly with the phosphorylated Thr93 of Ccq1 to ensure telomere maintenance. The shelterin subunits Taz1, Rap1 and Poz1 (previously established inhibitors of telomerase) were also found to negatively regulate Ccq1 phosphorylation. These findings establish Tel1ATM/Rad3ATR-dependent Ccq1 Thr93 phosphorylation as a critical regulator of telomere maintenance in fission yeast.